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1. INTRODUCTION 

For the past seven years, A.R.A.P., Inc. has had a series of contracts 
from the Naval Air Systems Command to develop a computer model for determining 
the detailed low-level atmospheric distributions of velocity, temperature, 
moisture, refractive index, and the turbulent variances of these quantities 
for marine environments. In addition to appropriately modeling the turbulent 
transport of momentum, heat, and moisture, it was necessary to incorporate 
moisture change of phase and the physics of thermal radiation into this model 
since low-level clouds or fog are a frequent occurance in the marine 
atmospheric boundary layer. The development and a number of sample 
calculations exemplifying different phenomena are detailed in References 1-17. 
Reference 18 which accompanies this report provides a detailed review of 
modeling the atmospheric boundary layer using turbulent transport theory. It 
includes a review of the status of our understanding of atmospheric boundary 
layer dynamics, as well as a review of the modeling of the three physical 
processes most critical for determining the atmospheric marine boundary layer. 
These three are turbulent transport, thermal radiation, and change of phase of 
atmospheric water. Reference 18 also provides a review of many of the sample 
calculations made with the A.R.A.P. model which successfully illustrates 
features expected in the atmospheric marine boundary layer. Section 5 of the 
present report counterbalances those "successes" by detailing some problem 
areas of the current model. Together they provide the detailed critical 
review specified in the past years contract. 

Two model calculations performed during the past year are detailed in 
Section 2 and in Appendix A. The fog calculation presented in the next 
section gives one possible reason why the surface air in fogs is generally 
found to be cooler than the ocean surface. By following the evolution of a 
fog which is formed by warm air passing over colder water under nocturnal 
radiation conditions, it is shown that the enhanced radiational cooling 
induced by the fog is sufficient to reduce the surface air temperature 
relatively rapidly to below that of the water surface. During the past year 
we have had discussions with E. Mack and W. Rodgers of Calspan regarding the 
forthcoming fog model evaluation study. We look forward to exercising our 
model as part of this study. 

Appendix A details a calculation of the detailed mechanism of 
Kelvin-Helmholtz wave breaking. The turbulent breaking process is modeled 
using our second-order closure model to describe the small-scale turbulence, 
while the large scale billow itself is calculated explicitly as a 
two-dimensional flow. This calculation was partially supported by an ONR 
contract which cabled for examining trackable clear-air, radar signals. The 
large values of C^, which can occur when this phenomenon occurs at the top of 
a relatively moist boundary layer when the air above the inversion is much 
dryer, makes this a likely candidate. This type of calculation can also be 
used to investigate the detailed interaction of waves and turbulence along the 
inversion and possibly lead to improved parameterization of this interaction 
in the one-dimensional models. 



Model development during the past year has concentrated on deriving a 
hybrid integral-differential description of the planetary boundary layer which 
would allow approximate solutions to be obtained using far fewer numerical 
calculations, and on deriving a capability for incorporating precipitation as 
a possibility in our two-phase representation of atmospheric water. Neither 
of these developments have reached the point of being fully integrated into 
our general model. Sections 3 and 4 detail the derivation and current status 
of each. 
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2. FOG EVOLUTION STUDY 

Our purpose in this section is to demonstrate the mechanism by which a 
fog generated by a decrease in surface temperature can relatively rapidly 
invert its internal temperature gradient so that the surface becomes warmer 
than the air in the fog. This mechanism is, of course, radiative cooling of 
the fog top which then quickly moves down through the fog layer by convective 
overturning. We present a case study of a fog produced by warm airflow over a 
cold surface illustrating the phenomenon; we have considered the horizontally 
homogeneous, time-dependent problem, but this is closely related to 
steady-state advection with time corresponding to downstream distance. 

In order to generate a cold water fog, we take an initially fog-free 
boundary layer, and suddenly reduce the surface temperature. The magnitude of 
the temperature change, AT, which is needed to produce a fog depends on the 
initial relative humidity of the boundary layer near the surface. In the 
absence of radiation effects, the surface layer analysis (Reference 10) can be 
used to give the relationship between the critical AT and the critical 
relative humidity. The relationship depends on the absolute temperature of 
the surface, and the result is shown graphically in Figure 2.1. It is clear 
that relative humidities below 95% will require a substantial change in 
temperature to produce a fog. It should be noted that radiative effects will 
change this result to an extent which depends on the relative magnitudes of 
radiative and turbulent heat transfer. 

Since we are dealing with surface temperature changes of only a few 
degrees, this restriction on initial relative humidity causes problems if we 
are trying to study the fog evolution in isolation. We need to set the 
initial humidity very close to saturation, which means that a fog is about to 
form even in the absence of our applied temperature change at the surface. 
Thus, the generation of the fog depends as much on the precise initial state 
of the boundary layer as on the externally applied forcing. We have therefore 
not attempted any extensive study of the fog evolution from different initial 
states with different surface temperature changes, but instead present a 
single case study and use the integration as an illustrative example. 

Our initial boundary layer for this case study has 93% relative humidity 
and is only about 50 m thick. The boundary layer was obtained by integrating 
in time with a constant geostrophic wind equal to 5 m/sec and a constant sea 
surface temperature for a few days to allow the humidity to increase. It 
proved necessary to impose a significant subsidence velocity, 3 cm/sec at 
1 km, to prevent the formation of a cloud layer; this is the reason for our 
relatively thin boundary layer. 

Figure 2.1 shows that a temperature drop of at least 6°C is necessary to 
generate a purely advective fog in our initial boundary layer with its 93% 
relative humidity. In fact, we used AT = 5°C, which means that we rely on 
radiative cooling to assist in the fog production, so that the fog does not 
appear immediately after the surface temperature drop. The evolution 
following the surface temperature drop was carried out under nocturnal 
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air-sea temperature differences required for pure 
advective fogs. 
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conditions. 

Figures 2.1 through 2.5 show the profiles of temperature, heat flux, 
liquid water content, and radiative cooling at several times after the 
change in surface conditions. We see from Figures 2.1 and 3.1 that the 
initial boundary layer has a warm surface and a positive heat flux at 
the bottom; this is required to balance the radiative cooling which is 
evident at t = 0 in Figure 2.5 

After 20 minutes, the surface temperature shows the 5°C decrease from 
290°K to 285°K, and that the heat flux has changed sign in the lowest 15 m. 
There is some cooling of the main part of the boundary layer, by about 0.5 C, 
due to the radiative cooling, and this occurs in the absence of a change in 
surface temperature. However, in the latter case, the temperature only drops 
by about 1 C over several hours and no fog is formed. 

Figure 2.5 shows some radiative heating at the surface after 20 minutes; 
but this only extends about 2 m vertically, so that the bulk of the boundary 
layer is being cooled by both turbulent transfer and by radiation. This 
causes the temperature to drop more rapidly than the humidity (which is only 
reduced by turbulent transfer) so that the air eventually saturates and a fog 
forms around t = 45 mins. At this stage the air has cooled, so that the 
surface heat flux is reduced in magnitude from its value at 20 minutes, but 
the air is still warmer than the surface. The fog extends about 12 m 
vertically at this stage (see Figure 2.4). Also at t = 45 min. Figure 2.5 
shows the beginning of the increased radiation from the top of the fog. 

After t = 45 min the fog develops in depth and intensity, and the air 
temperatures continue to fall due to radiative cooling from the fog top. The 
heat flux profiles show that the lower part of the fog is cooled by turbulent 
transfer. Shortly after t = 80 m, the air temperatures drop below the surface 
temperature, and we have a warm surface fog thereafter. The development 
continues after this time with the depth of the fog layer increasing and both 
turbulent and radiative heat fluxes also increasing. 

Thus, in this particular case, a cold water fog develops roughly 40 
minutes after the change in surface temperature, and persists as a cold-water 
fog for a further 40 minutes; after this time it is converted to a warm-water 
fog and continues to deepen and intensify. One may expect that fogs initiated 
by smaller drops in surface temperature will transition to a warm water fog 
more quickly. For a cold-water fog to persist it appears necessary to have 
both relatively strong winds and a drop in surface temperature which is 
stronger than that indicated in Figure 2.1 for the particular ambient 
relative humidity. 

Figure 2.4 shows that the liquid water content in the calculated fog 
increases rapidly up to an equilibrium level of about Ig/kg. This value 
appears to be significantly higher than atmospheric measurements which 
typically give liquid water contents of 0.1 - 0.2 g/kg. It seems likely that 
the reason for this discrepancy is the absence of any mechanism for removal of 
liquid water through gravitational settling in the model. In measurements 
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Figure 2.4. Evolution of the liquid water content following a drop 
of 5°C in the sea surface temperature. 
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Figure 2.5  Evolution of the radiative cooling rate following a 
drop of 5°C in the sea surface temperature. 
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over land, (Reference 19) concluded that only a small fraction of the liquid 
water which condensed actually remained in the boundary layer. The balance was 
presumed to have been deposited on the ground by gravitational setting. In 
our model, we assume a fixed droplet size spectrum for the purposes of the 
radiation calculation, and ignore gravitational settling since this is 
negligible for our assumed spectrum. A significant improvement would probably 
be obtained from a cloud physics' model which accounted for droplet growth 
within the fog and allowed the heavier drops to fall out. These processes 
have not been unambiguously identified as dominant controlling mechanisms on 
the liquid water content in atmospheric fog studies, but they are the most 
likely candidates. 
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3. HYBRID INTEGRAL-DIFFERENTIAL DESCRIPTION OF THE 

PLANETARY BOUNDARY LAYER 

USING SECOND-ORDER CLOSURE TURBULENCE THEORY 

3.1. Introduction 

In this work we describe a hybrid integral-differential procedure for the 
prediction of the dynamics of the horizontally homogeneous planetary boundary 
layer (PBL) according to a second-order closure theory of turbulence. This 
procedure is aimed at enhancing the quality of the usual finite difference 
solution of these equations by the incorporation of integral constraints. In 
particular, the intent is that a finite difference solution utilizing on the 
order of five grid cells should provide adequate accuracy with the hybrid 
method. The result would be a computationally efficient procedure which would 
be useful in operational applications. Such a method used as the basis for 
the inhomogeneous (three-dimensional) PBL would offer similar computational 
advantage and efficiency. 

In Section 3.2 we present the basic concept of the method. In 
Section 3.3 we indicate the manner in which integral constraints are 
incorporated with the finite-difference solution. In Section 3.4, we 
illustrate the method. 

3.2. Concept of the Hybrid Method 

The second-order closure theory of the PBL developed and in use at 
A.R.A.P.  (References 2, 7, 10) has proved quite successful in describing the 
dynamics of the PBL under most general steady state and transient situations 
and from stable to unstable conditions, including the presence of a capping 
inversion layer. Even for the horizontally homogeneous layer, the 
computational volume for executing these descriptions is still considerable, 
requiring 30 to 50 vertical grid levels for adequate resolution, particularly 
if an inversion is present. Many of the principal quantities of interest in 
the PBL are global, or surface quantities, rather than detailed local interior 
quantities. These key quantities include the surface fluxes of momentum, 
heat, and species, as well as the total boundary 1ayer depth and the cross 
isobaric wind angle. As such they are described by the integral forms of the 
equations of motion; however, these integral forms contain integrals over the 
profiles of the mean and turbulent field variables. 

There are two regions of sharp gradients in the general PBL: the surface 
layer and the inversion layer. It is therefore useful to treat these regions 
as "integral" regions in which analytical or approximate forms of the profiles 
are utilized in integral forms of the equations of motion. The "outer layer" 
which exists between the surface layer and inversion layer may then be treated 
either in integral ("single layer") fashion or with a full finite difference 
treatment. 
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The hybrid integral-differential method combines integral constraint 
equations with the full finite difference equations which describe the outer 
layer. The method can thus be used either with a large number of finite 
difference levels or with a sparse number of levels with a "good" solution for 
the boundary layer parameters still achievable in the limit in which the 
finite difference levels consist of no points, i.e., the description is purely 
integral. In this limit, the method bears some resemblance to various "layer" 
parameterization procedures (References 20, 21, 22). However, there is an 
essential difference between these layer parameterization schemes and the 
hybrid procedure we describe here. Mathematical approximation for simplicity 
of solution and physical modelling interplay together in the formulation of 
the layer parameterization models cited above. The hybrid procedure described 
here including its integral constraints is rigorously based upon the second 
order closure theory of turbulence. Hence, turbulence modelling issues are 
confined to the validity of the general second order closure theory. The 
hybrid procedure is directed to the representation of this system of equations 
and the method of solution of the system. Thus, in the hybrid method 
described here, solution approximation issues are separated from turbulence 
modelling issues. The capability for continuous transition from a purely 
integral description to a fully differential description is one of the 
features we have attempted to incorporate in the hybrid procedure. Of major 
interest is the intent that the integral constraints which are part of the 
hybrid method will significantly improve the solution of the PBL for cases in 
which a sparse grid of only four to six finite difference levels is used over 
that which would be obtained in absence of these integral constraints. 

A full second-order closure PBL model which could adequately perform with 
only four to six finite difference cells would be computationally efficient 
and would possess advantages for operational implementation in various 
applications as well as providing an economical basis for fully 
three-dimensional (horizontally inhomogeneous) PBL descriptions. 

The full range of PBL behavior ranging from stable to unstable 
including those capped by an in inversion layer may, in principle, be 
treated with the hybrid method. Large scale divergence, humidity 
effects, and radiative transport represent further key processes 
which require inclusion in the hybrid method. We have selected the 
following reasonable steps of development and evaluation of the hybrid 
method for the I-D homogeneous PBL. 

1. Neutral PBL 
2. General PBL (stratified) 
3. General PBL including inversion layer and large scale 

divergence 
4. General Moist PBL (including humidity and radiative 

transport) 

In the present report steps 1 and 2 have been completed and sample results 
are presented. These results are worthy enough to encourage us to begin 
steps 3, 4. The major activities in these steps involve the development 
of the integral equations for the inversion layer as well as integral 
equations for the prediction of the humidity boundary layer thickness 
and fluxes and the cloud base and cloud top elevations. 

20 



3.3 Integral Constraints and Their Incorporation Into the 
Hybrid Method 

3.3.1 Governing Equations of the Horizontally Homogeneous PBL 

We consider a horizontally homogeneous PBL in coordinates x,y,z aligned 
with z normal to the surface and x,y as coordinates in the plane perpendicular 
to z. Let 0 = a(U,V) be the velocity field in the plane and let (UQ.VQ) be 
the geostrophic wind velocity components defining the pressure gradTents. The 
momentum equations in the (x,y) plane may be expressed as 

~ (U„ - U)  = ^ M - f (V - Vg) + U„ (3.1) 

^ (^00 - V)  = ^ (vw) + f (U - Ug) + V„ (3.if) 

In the above, f is the Coriolis parameter, uw, vw are the stress components 
and U^ = u^(U^,V_^) is the velocity vector in the inviscid region above the 
boundary layer. The corresponding mean thermal energy equation for the 
virtual potential temperatuure a is 

~ (0=0 - y) = — (wy) - Q + o„ (3.3) 

where m  is the vertical turbulent heat flux and 0 is the thermal energy 
source term. The inviscid region forms of Eqs. (3.1) through (3.3) are 

MV„- V^ ) = G„ (3.4) 9 

+ f(U„- U_ ) -     V„ ^3.5) 
-at       "  9 
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^=0    =  Qcx> (3.6) 

where Uq„, Vg„ define the pressure gradients outside the boundary layer. In 
what follows we shall assume Ug = Ug„, Vg = Vg„. Thus Eqs. (3.1) through 
(3.3) may be expressed as 

— (Uco - U)  = — (uw) + f (V„ - V) ,   (3.7) 

^ (V„ - V)  = ^ (vw) - f (U<„ - U) (3.8) 
dt dZ 

— (Qa. - Q) = — (wy) - (Q„ + Q) '  . ,: (3.9) 

The turbulent moment equations at second-order closure level which we shall 
employ include those for the Reynolds stresses, heat flux, temperature 
variance, and the turbulent scale equation. We do not repeat the full set 
of turbulence equations here, but refer the reader to Reference 7. The 
two equations from the turbulence set which we will repeat here because of 
their use in the integral developments are the turbulent kinetic energy 
equation for the turbulent kinetic energy 0/2)q^ and the turbulent scale 
equation for the scale A. These are 

— aU   — aV   g — 
- uw   - vw — +   wo 

az    3z  QQ 

(3.10) 
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9A 

71 
= 0.35 A    fuTii}+ vT-^)   +0.075 q + 0.3-^ (qA^i}) 

qz   \      dz dz/ ^ 3z V      ^^/ 

0.375 (^\l 0.8 JL^ 
\ 3z/ q^ To 

Wd (3.11) 

Eqs. (3.7) through (3.10) along with the remaining second-order closure 
equations form the basis for the subsequent development. 

The mean defect kinetic energy equation from Eqs. (3.7) and (3.8j is 

2r(m) g    g    

—  =  (U^ - U) — (uw) + (V„ - V) — (vw) 
31 yz bz 

where 

E(m) I |L - 5|^ 

The total energy equation derived from Eq. (3.10) and the above equation 

3t 
3 

3Z 
UW (Uco- U) + vw(V„-V) + 0.3 — 

3z 
qA fM 

+ -^ Wb m^) (3.12) 

where 

E  = E (^) . ^ a^ 
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3.3.2 Integral Parameters and Integral Constraints 

The important integral (global as opposed to local) parameters of the 
neutral PBL are readily cited as the surface shear stress or shearing velocity 
components (u^,v*) and the overall boundary layer depth {^).    In addition to 
these, integral parameters may be generated by simply taking moments over the 
mean and turbulent fluid field variables. The first moments are the average 
velocity components: 

-1 j   U(z) dz <V>  =  6-^ J 
zo 

In the above equations we have 6o = {6 - ZQ) where ZQ is the effective 
roughness height.    These average velocities are equally expressible in terms 
of the displacement thickness 6u»6v defined as 

<^u 

6 . 6 

IUj-1 y    (U„-U)dz 6,      =      lUj-y     (V„-V)dz (3.13) 

where U = U(U,V) is the local velocity vector, U„ is the velocity vector in 
the inviscid region above the boundary layer and (U„,V„) are the velocity 
components in this inviscid region. 

In a stable PBL, the surface heat flux expressed in terms of e^ will 
enter the set of integral parameters as well as the average temperature <6>, 
or equivalently, a thermal energy thickness 6^ defined as 

6 

X    ^   y-1  f     (y  _e)dZ (3.14) 

z 0 

here 0 is a reference temperature and 6^ is the virtual potential tempera- 
ture ifi the inviscid zone at the boundary layer edge. If other energy 
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source terms appear in the thermal energy equation (such as radiative source 
terms) the temperature 0„ requires more detailed definition appropriate to the 
particular source term in question. Note that e^ may be a function of Z. 

In an unstable PBL, the above parameters also enter; however in addition 
a significant set of integral (over the inversion layer) parameters describing 
the inversion layer will also enter. We do not take up the additional 
integral parameters and constraint equations for the inversion layer in this 
report as described on page 20. 

The integral constraint equations corresponding to the foregoing integral 
parameters are the first spatial moments of Eqs. (3.7) through (3.9). These 
are (assuming ZQ independent of t): 

^(Itij6,)  = ui   + fojC^l (3.15) 
ot 

^(|U„IS)  = 4   -   f^ulUool       .     - (3.15) 

^(Br^e)  =  luJe* + SQ (3.17) 
ot 

The surface shgar veloci_t^ vector is u^ = ui  (u*,v|) where u* = -(UW)Q, 
V* = -(vw)o, |u*|t)^ = -(wb) and. (  )Q denotes a surface value. The thermal 
energy source term SQ is defined by 

S0 

z 

=  /  [Qoo - Q(z)]dz 

0 

The next moments involve products of the velocity. The defect mean 
kinetic energy thickness 6^"^) is defined as 

6^m)  . ^.ij   il^flJ^dz (3.18) 
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where Er is a reference energy which requires specification to complete 
definition. The turbulent kinetic energy thickness may be defined as 

0 

6(t)  = i-i   f 1 q2dZ 
E        "^ J     2 

Zo 

where q is the RMS turbulence velocity. One can also consider the total 
energy thickness &^  defined as 

Since it is the turbulent viscous field which underlies the defect mean 
kinetic energy as well as the turbulent kinetic energy, it is appropriate to 
select the reference energy £^  as the surface turbulent kinetic energy 
expressed in terms of the surface RMS turbulence velocity qo for neutral or 
stable boundary layers: 

E,  =  -^qj ,  (3.;^0) 

We describe the method of selecting Er in the case of unstable boundary layers 
in Section 3.6. The integral total energy equation has the form 

4 (E 6p) = u^ U„ + v^V„, + -i f 
at  "^ E    *      *     y^ ^ 

zo 

6 

wb dz    ■ 

6 

-    1       /"q     iq2    dz  (3.n) 
A      J   A      2 ^ 

zo 

The characteristic average scale in the boundary layer may be defined as 

£ = 61^ r     Adz .    (3.22) -f 
^0 
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The integral equation governing i  is then the integrated form of the scale 
equation (3.11): 

6 r^ 
— {SL6 ) =  0.35 f — (uw — + v^—) dz + 0.075  / q dz 
3t   °       ./ q2    3z     3Z            < 

ZQ ^0 

0.375 /' i (-i qAl dz - 0.8  T -ii  -^ Wb dz     (3.23) i ri ^qA^ dz-0.8 r-A  -i 
/  q laz  i J      q^  To 
ZQ       \     ' % 

It can be seen that the Eqs. (3.15 - 3.17) and (3.21 - 3.23) form a 
closed system for the integral parameters <Sui "^v. ^6, ^E,  ^    provided the 
fluxes u^, V*, e^ and the integrals appearing in Eqs. (3.21) and (3.23) can 
be expressed in terms of these quantities. 
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3.3.3 Structure Function Approach to the Surface Flux Laws and the 
Integral Parameters 

We now take up the method of closure of the hybrid procedure which 
unifies the integral constraints with the fully differential procedure. The 
unifying vehicle is a system of structure functions. We consider first the 
representation of the surface fluxes in terms of the integral parameters. 

In the absence of stratification effects, the velocities and turbulent 
momentum fluxes in the surface layer in a right handed orthogonal coordinate 
system with the U component aligned parallel to the outer flow velocity 
Uoo may be represented as ■A' 

uw 

vw 

i->2, cose (3.24) 

u^i sin3 (1-(!)-,) (3.25) 

U =   In (z/z„)cos3 (3.26) 
K 

V = ^^ In (z/ZQ)sinB(l-(})2) (3.27) 

where u^^ = (u|,v*) is the vector of surface stress components lying in the 
plane of motion. Here uw , vw are the turbul^ent momentum fluxes parallel 
and perpendicular to the outer flow velocity U^ while U, V are the  ^ 
corresponding velocity components. The angle between the local velocity U 
and the outer flow U_^ is denoted as 6 . The absolute magnitude of the 
surface shear stress components lying in the plane of the flow is |u^| . 
The functions (p-\{2)   ,  (})2(z) are representations of tjie effects of the 
Coriolis force-induced pressure gradient in forcing vw and V to deviate 
from constant and logarithmic values respectively which is the first 
manifestation of the pressure gradient effect on the surface layer for 
z > ZQ , (Reference 23): 

f U I |u*| 
<pAz)=-—^  [z - z - —— C0S6 2Y(Z)] (3.28) 

^     iu.l^sing      °  K|U„| 
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(t)o(z) 
f\t   I 

[S.l^s inB ln(z/z  )      L 
z - z    - z    ln(z/z  ) 

0 0       ^  '   o' 

cosB 
K   U 

ZY(Z)  -   [z^   in(z/z^)  -   (z-z .»]) (3.29) 

with 

Y(Z) = ln(z/z^) (l-z,/z) 

Now let    a^    denote the angle of the outer flow velocity    Uoo   with respect 
to  the    X    axis of an arbitrary coordinate system fixed to the earth.    Let    a 
denote the angle of the local   velocity    U    makes with the same coordinate 
system.    The angle    3    is related to    Ooo , a    as 

3 = a - a 

The surface layer momentum flux and velocity components in this general 
coordinate system in which we shall   formulate the procedure are given by 

uw 

vw 

ijytl     [cosa + sin3 sina    tj), (z)] 

u^l  [sina - sin3 cosa^ 4>i(z)] 

(3.30) 

(3.31) 

luJ 
-^ Tn(z/z^)   [cosa + sin3 sina^ (J)2(z)J (3.32) 

lu.l 
V = —^ ln(z/ZQ)   [sina - sin3 cosa^ <p2^^)'i (3.33) 

Consider    z = 65    as the height of the surface layer.    Then at this 
level  we have from Eqs.   (3.32)  and  (3.33) 

u (3.34) 
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where 

$(6^) = {1  + sinS (J)2(63)[<j)2(5s) - 2]}''/^ 

Let us now compare this  result with the Monin-Obukhov surface layer similarity 
theory for stratified flows which (neglecting Coriolis effects) has the form 

 , LA!  (3.35) 

where    y^i ^ l^u^^s/'-)    ""^ ^ Monin-Obukhov similarity function for momentum 
transfer and has different forms depending upon whether the Monin-Obukhov 
length    L    is greater or less than zero.    The Monin-Obukhov length is defined 
as 

T    |u^| ' -- 
I   = _° 

We observe that the form Eq.   (3.34) which includes first order corrections 
for the effects of the Coriolis  forces in the surface layer was derived with 
the condition that    u*    and the RMS turbulence velocity   qg    were approximately 
constant in the surface layer.    On the other hand,  the M^mn-Obukhov 
similarity form  (3.35) is based on the condition that    |u*|     is constant in 
the surface layer.    For flows in which the angle    B    is not too large,  it may 
then be possible to obtain a general   "extended" surface layer resulting in 
the form 

lu.l=-^ ■ .      (3.36) 

where 

°u = ^^'^s/^o^^"^'^s/^o^ ■" ^u ^^-^^^ 

Although we have not proved it here, we conjecture that the form Eq.   (3.37) 
is correct to first order in the surface layer expansion parameter 

flU  |6, 
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where Eq. (3.38) defines the Coriolis surface length L^ which can be 
interpreted as the height at^which Coriolis force induced pressure gradients 
disturb the uniformity of |u*| and the pure logarithmic form of the 
velocity variation in the surface layer. 

We note that by choosing 65 « |L| , Sg « IQ    we may always render 
the form of D^ in Eq. (3.37) in the pure logarithmic form. There is a 
usefulness, however, in allowing the surface layer to be as thick as possible 
with consideration for the validity of Eqs. (3,30) - (3.33) in application 
of the hybrid procedure with a space-grid finite difference procedure. 
Incorporation of virtually the full logarithmic layer below z = 65 then 
allows the finite difference procedure a better resolution of the more linear 
region for z >_ 6^   .     In the absence of stratification, Eqs. (3.30) - (3.33) 
are quite accurate even for 65 > l^    yielding results that are within 10% of 
the exact solution for the steady state PBL at 65 = 10 L^- . 

The counterparts to Eqs. (3.30) - (3.33) for heat flux and temperature 
distribution in the surface layer are 

w6 = - |u*|e^ (3.39) 

= O^P^DQ/K " -     (3.40) 

from which we may write 

'* FV^^S-^^ , (3.41) KpUg SO 

where    9      is the virtual  potential  temperature at    z = 6g  ,    9      is the 
surface    temperature,    9^    is a reference temperature, and    P[^    is the 
turbulent Prandtl   number.    The function    DQ    like    D^j    consists of a 
logarithmic portion and a stratification portion embedded in the Monin-Obukhov 
simlilarity function    ^0   : 

ln(6^/z^) + y0(6s/L) (3.42) 

To relate the fluxes    lu^^],    9^ ,    and the surface layer angle   a    (or    3) 
to the integral   parameters    6^J  ,    6^  ,    6Q    we express    U^  . V^  , and 
95-9Q    in terms of the structure functions    s(U)   ,    s(V) ,s(Q)    as  follows: 
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U' = S^^^<U'> _. . (3.43) 

V = S^^^<V'> (3.44) 
s 0 

) - 0 = s^^^<e-e > ■ (3.45) so 0 0. 

where the { )' indicates representation in the coordinate system aligned with 
l5^ and the < >o indicate a spatial average over the outer part of the 
boundary layer: 

6 

<( )>o = (6-63)-^ J      ( )dz 

These averages may in turn be related to the displacement thicknesses    6^°    , 
6jo)  , 6jo}      as 

<U'>o =  Itld  - COSTCO i'^lho - ^^"""c^ 4°^/^so) ^3.46) 

<V>^ =  |tlJ(sina^6i°V63^-cosa^6i°V63,) (3.47) 

<e-Vo = ^[(^«>A)/^-4°^o] , -    ^'-'^^ 

where 650 E 6 - 65 • Thus, given the structure functions S^^' , S^ ^ , S^ ^ 
we obtain the flux laws which relate |u*| , a (or 3), 9* to the integral 
parameters 6(0) , 6j°K 6j°^ as 

. lu.|=^ :    (3.43) 
U 
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3 = a - a    = tan"'(V'/U') 
00 S      S 

(3.51) 

with    U'   , V'    and    6 -9      given as 
S S 00        s 3 

U'   =  Itl   IS^^^l   - cosa    6^°V6      - sina    6^°^^    ) s       '  oo' 00    u        so 00    V    '   so (3.52) 

V'   =  |ti  IS^^^sina    6^°V6,„ - cosa    fif^Vs^J 
Q I    ooi * CO     II      '    en CO     V      '    en' S I    oo U SO V      'SO 

(3.53) 

111 = /(u')^ + (v:)2 (3.54) 

'««-s)=V'^'(^-4°K, (3.55) 

The "outer" thicknesses 6^°^ , 6^°^ , 8^°'    are  related to the total 
thicknesses 5 , 6,, , 6„ as 

U V o 

J J J 

where the inner thicknesses    6.'    are related to    |u*|   ,3,6^    through 

6^^'^ = (6  /&j\t r'' U so      0    '    ool 
(U -U)dz (3.56) 

6^^"^  =  (6    /6Jlti  r^ (VV)dz 
V so      0    '   ool / 

(3.57) 
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«s 

/ 
'^e'^ = (V^o^^r  /  (^«>-S)^^ (3.58) 

^1 

where U , V , 6 in Eqs. (3,56) - (3.58) are given in terms of the surface 
layer expressions (3.32), (3.33), and (3.40). 

Equations (3.49) - (3.55) are the key resj^Us of this section. They 
provide the surface flux laws which relate u* and 6* to the integral 
parameters 6^1,6^ . SQ    and in so doing naturally introduce the structure 
functions  s(U), S^V), s(6) which are obtained from detailed solution of 
the differential equations. Equations (3.36) and (3.41) are exact statements 
provided the structure functions s(U) , s(V) , s(9) are known. These 
equations relate the surface fluxes u* , v* , 9* to the integral thickness 
6^1 , 6y , 6Q . As such, they may be considered friction and heat flux laws 
for integral PBL description. We now observe that if the detailed profiles 
U(z), V(z), e(z) are known, the structure functions S^^) ^ s(V) , s(9) 
may be directly calculated (with specification of the thickness 63). Hence, 
these structure functions may be calculated in terms of the profiles generated 
by the finite difference solution. It may be further observed that the 
integral constraints furnish u* , v* , 0^ in terms of the integral thickness 
6^j^  ,  6yj  ,  6Q   .    Hence, these surfaces fluxes together with the surface layer 
functions Eqs. (3.52, 3.33, and 3.40), determine the boundary data at z = 63 
for the finite difference description of the domain 63 < z < 6 . As such, 
the derivative boundary condition normally required at the top of the surface 
layer 2 = Sg for the finite-difference equations is dispensed with. The 
derivative boundary conditions are thus replaced by the integral constraints. 
The interest is that this procedure for treating the surface conditions should 
significantly improve the quality of the overall finite difference description 
when a sparse set of grid levels is utilized consisting of perhaps only four 
to six grid cells. 
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3.3.4    Transfer Coefficients 

We may define transfer coefficients    Cf , CQ    for momentum and heat 
transfer to the surface as 

|u*| 
C-,  = 

f   'tC 
(3.59) 

^e = 
U* 6* 

00    r 

(3.60) 

The momentum and heat fluxes are then expressed as 

u^ = c^  Iti  1^ cosa ,      , (3.61) 

v^ = c^ \1}X si"^ (3.62) 

u*le* = ce|tije^ (3.63) 

It is also useful  to define differential  momentum and ^eat transfer coefficients 
which characterize the rates of change of    u^ , v; ,   |u*|e^     with respect to 
the integral   parameters    6^  ,  6„  ,  6Q    (with all  other quantities held fixed). 
Let    6^^    represent the vector of thicknesses    6^  » ^v  » "^6    ^"^    ^a    ^^^ vector 
of fluxes    c^cosa ,    CfSina ,09: 

fcxosa 

6^=   I  6     I c^=    jCfSinal (3.64) 

The differential  exchange coefficients    C „    are then defined as 
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'ae = ^o    ^V^^B (3.65) 

For the case in which   a^ E 0    these exchange coefficients have the fo rm 

'11 

'12 

'21 

'22 

''  \ti. 

rs(u) 

.(u) 

(v) 

(v) 

1+3A 
^ -) cos^B + sin^B 

1+3A u 
A 

1+3A. 
1    cosBsi 

r / 1+3A 

inBcosB 

nB 

sin B + cos B 

(3.56) 

'13 

'23 
s     0 

(e) 
cosB 

sinB 

(3.67) 

•> 
'31 

'32 

U        /1-3A, 
00 I / f 

S^U) COSB 

S^^^  SinB 

(3.68) 

^33    "    ^i 
r     \     3(e) 

s    0 

1-A. 

(3.69) 

In the foregoing 

A    -^    ''^ L    '^e 
u      D^      8L Dn      9L 
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A=l +2A^ -Ag 

In the stable limit where u^  ~ L » He  ~ "T  ^^^ functions A^ , AQ become 

^u ^' 

^ = -i7    'e = -t 

and obey 

1 ^ A„ < 0     - 1 < A„ « 0 
u      . 0 

with 

A^ , Ag ^ 0   as L -^ 

A^^ , Ag -^ -1   as L -> 0 

We may note that as L ^- «> , A^ ->■ 0 and the coefficients C-] 3 , C23 ->■ 0 . 
The momentum flux then becomes decoupled from the heat flux. On the other 
hand, for finite L , the heat flux and momentum flux are coupled. In the 
case where a = 0 , the Brunt Vaisaila frequency in the surface layer is 
given by 

,(S) 
"^BV =7^13^31  l^^col/^o (3.70) 

When L < 0 , the product 0-1303^ is less than zero, and the Brunt Vaisaila 
frequency is imaginary. 

37 



3.3.5 Surface Layer Depth 

Let us now consider the surface layer depth 65 . This depth is rigorously 
determined by- the strength of the terms in Eqs. (3.7 - 3.9) which disturb the 
condition 

g          
■^ (uw , vw , we) = 0 

and the validity of the surface layer solutions Eqs. (3,24 - 3.27). There are 
three general effects: (1) the Coriolis effect, (2) unsteady effects, and 
(3) thermal source terms. From the work of Reference 23 it can be shown 
that the Coriolis effect leads to 6^ determined by 

63 < L^ = IsinBl |u^|/(lfl Itl^l) (3.71) 

Let us now consider the unsteady effects characterized by unsteady forcing 
frequencies    f^°°)  ,    f\°°J  .    Such effects lead to conditions of the form 

^s <  Iu*l/(|fj"'^l   li^ool) «s <   l*^*!   |e*l/nfl°°V,) .       (3.72) 

Under all  conditions the surface layer depth    6      should  be limited by 

-Ss <  IM (3.73) 

We remark that although the expedient of setting 

6    = e &^ ' (3.74) 
SO 

(where e is some small fraction) is simple and attractive, such a procedure 
is not necessarily consistent with the definition of the surface layer as that 
region in which the solutions Eqs. (3.24 - 3.27) are valid. Although Eq. 
(3.74) would likely lead to a determination of 65 consistent with Eqs. (3.24 - 
3.27), the conditions (3.71), (3.72), and (3.73) are the more rigorous conditions 
for the determination of 6^ . 
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3.3.6 Energy Thickness and the Dynamic Equation for the PBL Thickness 

We now consider the development of the integral energy equation in terms 
of integral structure functions. We consider the choice of a characteristic 
energy E^ and characteristic RMS turbulence velocity q^ . In a stable 
PBL (L > 0) we select q- as the surface value % In the case of an 
unstable PBL  (L < 0) the surface turbulence level  does not characterize the 
average turbulence levels within the PBL because of the buoyant production 
of turbulence.    In this case,  we select    q      as 

8£ 
KL 

I -y 3 \l/3 

Hence,  the reference turbulence and energy levels are given by 

3\ 1/3 

L > 0 

L < 0 

(3.75) 

^  = 2    % (3.76) 

We now represent the integrals appearing in the total energy equation as 

/ 
(?) (|q')d ^A' '2 ^E   T "^E^r (3.77) 

/ 
^ we dz 
0 

= - s (b) 
KL (3.78) 
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The above equations are the defining equations for the structure functions 
S^d) ^ s^'^) which are the structure functions for turbulent decay and buoyant 
production/destruction of the total energy. The quantity i    is the character- 
istic turbulent scale size with the boundary layer. This quantity is governed 
by the integral form of the turbulent scale equation which is described in 
Section 3.7. 

In the usual fasion we define &Q    as that elevation at which the 
viscous turbulent levels have fallen to an arbitrarily small fraction of the 
maximum values within the boundary layer. We choose to relate this thickness 
6Q directly to the total energy thickness 6^ . Thus, we relate 6^ through 
a parameter r as 

^0 = r&^ (3.79) 

6 = r6c + z„ 

The total energy integral equation now becomes an equation for 6Q    by 
eliminating 6p through Eq. (3.79): 

A <Vo' • 4" ^(< - ^' - 4"Vo   ■ t3-8°) 

In Eq.   (3.80),  the energy decay rate   toi        is given by 

4^^^ = 4"*^ v^"^^^ (^-^^^ 
while the buoyant production/decay rate is given by 

4^^  = s(^)   |U*1^/(KL £) (3.82) 

* 
The equilibrium boundary layer thickness    6      is given by 

*     4rJi(u?U    + v*V  ) *^_J_*^ 1^ (3.83) 
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We see that in the neutral case (L -> <») , the total boundary layer thickness 
relaxes to the equilibrium thickness 6*    on a time scale given by ooldj-' . 
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3.3.7    Average Scale and Integral  Scale Equation 

It will  be noted that in the expression of the various integrals of the 
total  energy equation in terms of non-dimensional  structure functions,  it 
was necessary to utilize the average scale    £  .    We now take up the structure 
function transformation of the integrated scale equation  (3.23) which governs 
£  .    We define the structure functions    s[°^    for the turbulent destruction of 
scale as 

0 

/ 
[0.35 ^ (uw g^ + vw 3^)  - -y- (^)  ]dz 

z 
0 

,..        ulu    + v*V 
= - S^'^Jl   {-^ — 1 • (3.84) 

The structure function for turbulent production of scale    S^^'    is defined 
by the statement 

/    0.075 qdz  = S^^'  q^Q 

z 

= sJP)  q  6 (3.85) 

0 

The structure function for buoyant production/destruction of scale is defined 
by 

-^3 

[   \   f^dz = = sib)    ^   ^£ (3.86) 
j    q      0 ^        Kq; 

^0 

The integral form of the scale equation may then be expressed as 
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,->   ,3 

0.8 S;^^ -^-   f (3.87) 
<q^ 

We may express the above result as 

where oo^ ' is the scale decay rate given by 

(d)   (d)  ^''*'^c° ■" ^*^<») 
S  = ^5   :;  (3.89) 

and co„^ ' is the buoyant production/decay rate for scale: 

,(b) = 0.8 S(^) ^ (3.90) CO 

* 
The equilibrium scale £  is given by    , 

^ = (d) 2  2  "^0 (3.91) 
S^^(u:U + v^V ) ° 
£    »  T CO       ^ QO' 

Nominal values for these structure functions are S^ '  = 0.2, S^*^^ = 
0.0125, Sj[b) = 0.5. The behavior of the scale in the neutral and stable 
limits is of particular interest. In the neutral limit the scale will take 
the equilibrium value indicated by Eq. (3.91). For the above nominal values 
of the structure functions we find for a steady state, neutral PBL (with 
V s 0) 
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^* = 0.06 6^ (3.92) 

in good agreement with the characteristic scale predicted in Reference 24. 
In the strongly stable limit (0 < L « 6o) the scale will tend to an 
equilibrium value given by the balance between the last two terms of 
eq. (3.87) 

So  K q 

-> 
s|^8)|u 

(3.93) 

which yields    £ = 0.16 L    for the nominal  structure function values.    This 
result is  in agreement with the appropriate limit on    £    of    ~ 0.2 L    for 
strongly stable boundary layers. *■■ 
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3.3.8    Linearized Forms of the Integral  Equations 

We may express the integral  equations for the mean flow,  Eqs.   (3.20 
3,22)  in terms of the thickness and flux vectors    6    , c      defined  in 
Section  3.4 as a        a 

d6 ■ 

-IT =  \^J^    + f^  0^0 -  B „6o (3.94) 

where Z „ is the partial anti-symmetric matrix: 

0  1  0 

^e.B=  (-1  0  0 1 ,. (3.95) 

0  0  0 

and    B ^    is the matrix of forcing functions; 

fj-)    0        0 

B,3=    jo        fj-)    0     I ,■ ■.;,  (3.96) 

0 0      f^) 

where 

ditl :(-)    _    ^(~)    _   _L 
ooi 

'"'-f   -df (3-38) 
r 

The linear expansion of   c^^   about some state    Cj^(O)  , 6^(0)    is 
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^a = ^a(0) -^o'^WV^a^^^^ 

where C^g is the differential transfer matrix defined by Eq. (3.65). Sub- 
stituting this form into Eq. (3.94) we obtain 

d6 
^=I^JC,(0UA^363.6;^|UJC^363(0) (3.99) 

where    A^^^    is the fundamental  matrix of the system: 

If the state    6^(0)    is an equilibrium state,  then the equation governing 
perturbations      5^ ~ &^ -  6^(0)    about this  state is 

d6' 

-df = V6 (3.101) 

We thus see that the matrix A„g contains all the fundamental linear response 
modes of the system including the rotational (Coriolis) modes and the Brunt 
Vaisailai modes. Two of the eigenvalues of A^g may be identified with the 
rotational modes while the third eigenvalue may be identified with the Brunt 
Vaisaila mode. 

The integral equations for the boundary layer thickness 6Q and the 
scale £ , Eqs._(3.80) and (3.89) are similarly in a form in which linearization 
is readily applied. We point out the linear forms of these equations because 
they form the basis of the computational solution technique. We do not finite 
difference the equations for 6„ , 60 , £ . Rather we utilize the linearized, 
constant coefficient forms of these equations, assuming their validity over a 
small time interval At connecting the two states at t] , t2 in terms of 
analytical solutions to the linear forms with the coefficients held fixed at 
their values at the time t-| . After the solution is obtained at time t2 , 
the coefficients are re-evaluated and the process is repeated for the next 
level t3 = t2 + At , etc. 
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3.3.9 Coupling of the Integral and Differential Systems 

As noted previously, the integral equations for the variables 
j , o , 6^,  6, I  and the fluxes u^, v^, 6 , 6 , 6Q, 6, I  and the fluxes ui, v^, 9^ form a closed dynamical 

system if the structure functions S^^^ S^^\ S^®\ S^^^\  S^j! s[P^ 

i^' s^  are known. Because of the manner in which these structure functions 
are defined, they are only sensitive to the integrals over detailed 
profile shape and are not sensitive to the characteristic magnitudes 
of the variables. Thus, one can specify the structure functions as 
pure non-dimensional numbers and obtain reasonably good solutions 
for the integral and surface parameters. For example, for a neutral 
PBL with unsteady forcing which is not too rapid compared to the rotation 

rate f, the values S^^^ = 0.8, S^^^ = 3.0, S^^^ = 0.15, sj''^ = 0.0125, 

S\   '  = 0.2 r = 0.35 will yield satisfactory results with 6 = 5L . 

For flows with strong forcing, more accurate results are to be 
obtained by introducing a finite difference system in the "outer" domain 
6 < z < 6 wherein the general, second order closure system of equations 
is solved. 

This finite difference system requires boundary data at the surface 
z = 65 as well as the free stream conditions at z = 6. Finite difference 
derivative boundary conditions which would otherwise be required at the 
surface layer "edge" z = 65 are dispensed with; instead, the boundary 
data for U(62, t), 6(65, t], ... uw(6s, t), ... are taken from the integrally 
determined surface layer conditions and flux laws. Hence, the surface 
boundary condition for the differential equation set are fixed by the 
integral parameters. 

The coupling back upon the integral constraint equations from the 
finite difference generated profiles is through the non-dimensional 
structure functions which involve integrals over the profiles of the 
velocity, temperature, and turbulence fields. In the limit in which 
no finite difference points are used, i.e., the method is purely integral, 
these structure functions may be specified as pure numbers. Hence, at 
appropriate time levels in the course of evolution of the integral 
equations, the structure functions are up-dated by explicit calculation 
of the integrals over the profiles generated by the evolution of the 
differential equation set. 

The finite difference system is set up on a dynamically moving grid 
whose first point is located at z = &^{t)  and whose uppermost (top) point 
is located at z = 6(t). The motion of the grid is thus fixed by 6(t) 
which is in turn determined by the integral equation of the total kinetic 
energy. The basic flow of information is shown schematically in Figure 3.1. 
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3.4 Illustrations 

3.4.1 PBL Subjected to Unsteady Forcing ' 

As a basis for illustration we consider a particular unsteady problem for 
the neutral PBL. These problems will involve ramp transitions of the inviscid 
region velocity from one steady state level to another. If U„(0) is the 
initial steady state and Uoo(l) is the final steady state, the ramp transition 
is defined by ' 

Ujt) 

UJO) 

U„(l) - U„(0) ^.  ^ ^ 
UJO) +   f(t-to) 

UD 

t < tf 

to < t <; to + Tf-i (3.102) 

xf-i < t 

The transient is specified by the parameters U„(0), U„(l), T. The general 
problem is: A boundary layer in steady state corresponding to an inviscid 
velocity U„(0) is subjected to a linearly increasing inviscid velocity over a 
time period xf until it reaches a value U„(l) at which point the velocity 
remains fixed at the new steady state value U„(l). Determine the motion 
within the PBL. As such, this problem allows us to study the neutral PBL 
subject to both Coriolis effects and unsteady forcing. 

The geostrophic conditons (Ug, Vg) are established so that for all time. 

ujt) (3.103) 

We select conditions exhibited in Table 3.4.1. It should be observed 
that these conditions describe a very severe transient in that the forcing 
frequency f^u) [Eq. (3.97)] is initially ten times greater than the Coriolis 
frequency f. 
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Table 3.4.1 

Conditions for Neutral PBL Subjected to Ramp Transition 

U<»(0) = 1 m/sec 

Ujl) = 10 m/sec 

1=1 

f = 10-'+ sec-i 

The solutions for this problem are determined in three different ways. In the 
first, we utilize the standard A.R.A.P. second-order closure theory 
implemented in a fully finite-difference procedure utilizing of the order of 
40 grid levels. The PBL response (as reflected in surface RMS turbulence and 
cross-isobaric angle) computed in this manner is shown in Figure 3.2. In the 
coordinates utilized, the Coriolis period is equal to 2TI. It can be seen that 
qo makes an initially rapid transition (including an overshoot and undershoot) 
during the period of acceleration of the outer flow and then oscillates about 
its new level with the oscillation slowly damping. The angle particularly 
evidences higher harmonics of f. These result from the nonequilibrium 
rotational wave modes which are present in the turbulence equations. 

In Figure 3.3 we show the response to the same problem as computed 
in the second manner: the hybrid procedure with no finite difference 
levels, i.e., the procedure in pure integral form. The integral model 
accurately exhibits the initial overshoot in qo (but fails to give an 
undershoot), and then yields a similar decline over the period of 
acceleration. Because it does not contain dynamic equations for the 
full Reynolds stresses, the pure integral form of the hybrid model does 
not yield the higher harmonics of f, but only oscillates at the fundamental. 
The average angle response follows the full finite difference solution 
well but climbs more rapidly to the peak value following the period of 
outer flow acceleration. 

In Figure 3.4 we show the response to the same problem as computed 
in the third manner: the hybrid procedure with 5 finite difference levels. 
The response is equally well predicted with a tendency for the first 
harmonic (but not a second) to appear in the angle response. We remark 
that the hybrid procedure with only 5 grid levels is somewhat sensitive 
to numerical instabilities in the following sense. If the profile 
computation over 5 points develops any significant errors, the degrading 
influence on the structure functions can feed back through the surface 
conditions and further degrade the profile structure near the surface. 

Nonetheless, the hybrid procedure executes at least 8 times faster 
than the full finite difference procedure and as much as 40 times faster 
for the purely integral version. The good quality of these results, 
given the vast decrease in computer resources spent, seems highly 
worthwhile. 
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3.4.2 Stable PBL Illustrations 

As a second illustration, we consider the computation of stable PBL 
response. Our illustration for this case will be the archetypal problem 
of a constant surface cooling rate in which a quasi-steady boundary layer 
is established (References 25-27). We begin with an equilibrium neutral 
PBL at time t = 0 at which time a constant surface cooling rate is 
applied. After a period of several Coriolis periods, the quasi-steady 
state is established. The computation illustrated here is for the 
purely integral version of the hybrid procedure. The conditions 
for the illustration are presented in Table 3.4.2. 

Table 3.4.2 

Conditions for Constant Surface Cooling 
Rate Stable PBL  Illustration 

|ti^l 10 m/sec 

ZQ 10"'m 

f 10"'  sec"' 

^ 1   K/hr 

dt 

s(U) 0.8 

S^^^ 3.0 

S^^) 0.6 

Sg^^) 0.15 

.  ( S  (^^ 0.5 

S^^^^ 0.20 

S.^P^ 0.0125 

S,^'^^ . 0.4 

0.35 
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The evolution of the boundary layer for these conditions is 
shown in Figure 3.5. After a transient of approximately 2 Coriolis 
periods the characteristic boundary layer parameters approach quasi- 
steady values. These quasi-steady values are consistent with those 
predicted in Reference 25. The hybrid model indicates an initial 
undershoot in cross-isobaric angle of -15" before evolving to a steady 
state values of approximately 50°, This steady state value is 
about 10° larger than that predicted in Reference 25; no attempt has 
been made to fine-tune the values of the structure functions in these 
illustrations to effect more exact comparisons. The value of the 

Zilitinkevich parameter d =6/f/|u JL ''^ shown in Figure 3.5(e) and 

its value of 0.44 at quasi-steady state is closely consistent with 
that of Reference 24 and 25. 
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THE INTERACTION OF TURBULENCE WITH PRECIPITATION; 

FORMULATION OF A PRECIPITATION MODEL 

FOR THE PLANETARY BOUNDARY LAYER 

4.1 Introduction 

Many of the atmospheric Planetary boundary layer (PBL) processes and 
episodes which are successfully discrirable in terms of a second order 
closure theory of turbulence such as that in use at ARAP (Reference 10) 
involve the transport, condensation, and evaporation of water. It is 
important that such models correctly describe the overall balance of 
water by the various evaporation, condensation, diffusion, and advection 
mechanisims. In some cases of interest, precipitation of cloud water in 
the form of rain or drizzle to the surface is an important process controlling 
the balance of water. In addition, precipitation is of interest in its 
own right; for it is desirable to predict the likelihood and magnitude of 
precipitation drizzle or rain events. In the present work we therefore 
present a discussion and model of precipitation for use in atmospheric PBL 
models. Because we restrict attention to the PBL, we consider only warm 
(non-freezing) precipitation and cloud droplet growth processes. 

Following the stage of condensation growth in the early period of 
cloud formation (droplet radii r < 10 ym), further growth of the cloud 
droplets to reach precipitation size is generally believed to occur by 
collisional coalescence of droplets. Gravitational sedimentation has 
received virtually the exclusive attention of theorists as the collisional 
coalescence mechanism of atmospheric clouds (References 28-30). There 
seems little doubt that the collisional coalescence of drops of different 
size is an important droplet growth mechanism at some stages of cloud 
evolution. On the other hand, in the early stages of growth (1 < r < 50 ym) 
this mechanism possesses certain limitations. Two of these limitations 
are (1) the inherent requirement of differential size for a non-zero 
collision rate, and (2) the sharply diminished collision efficiencies 
which result for the vanishing relative Reynolds numbers of differential 
sedimentation when both collision partners approach the same size. These 
two limitations when viewed in the light of a further result from classical 
condensation theory - namely the narrowing of the droplet spectrum into a 
single size during condensation growth - suggest that collisional growth 
mechanisms other than gravitational sedimentation may play an important 
role in the initial growth stage of clouds into precipitation size drops. 
In particular, atmospheric turbulence may play an important and direct role 
in the evolution of the cloud drop spectrum. 

We propose, therefore, to include in the collision mechanism of our 
precipitation model the effects of atmospheric turbulence in addition to 
classical gravitational sedimentation. There appear to be at least two 
unique ways in which turbulence affects the evolution of the cloud drop 
spectrum. The first is in the dynamics of condensation. Although classical 
condensation theory predicts a narrowing spectrum, (forcing a single size 
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cloud droplet) it appears that when condensation is considered in a turbulent 
environment, the spectrum may be broadened (References 31, 32). The second 
role is in the collisional growth stage in which the turbulent velocity 
field provides not one but several mechanisms for the collisions of drops. 

In Section 4.2 we review the stages of condensation and growth processes 
for clouds pointing out the regimes in which turbulence can be of importance. 
In Section 4.3 we discuss in detail the turbulence collision mechanisms and 
develop the collision kernel for the processes of both turbulence induced 
collisions and gravitational sedimentation. In section 4 we present a two- 
group precipitation model based upon the growth mechanisms discussed in Section 
4.3 which we term the Cloud-Precipitation (CP) model. In Section 4.5 
we present some illustration calculations of the CP model for the infinite, 

homogenous cloud. 

4.2  Condensation, Evolution of the Cloud Droplet Spectrum, and Precipitation 

To set the stage for the model we propose, we first review the various 
processes which take place from the onset of a water mixing ratio in excess of 
the saturation value to the final stage (if it occurs in the time scale of a 
particular problem) in which drops precipitate to the surface. We point out 
the role of turbulence in certain of these stages of development. The stages ■. 
of drop evolution may be defined in the following scheme: 

(1) The Nuclei Activation Stage      _2 
drop (particle) size   =   10 yrn < r < 1 ym 
time scale =   1 sec. or less 

(2) The Condensation Growth Stage 
drop size =   1 ym < i^ < 10 ym 
time scale '^       1-100 sec. 

(3) The Collisional Growth Stage 
drop size =   10 ym < r < 10^ ym 
time scale =   >  100 sec. but highly variable 

(4) The Sedimentation Stage ^  ^ 
drop size =  100 ym < r < 10^ ym 
time scale =  10"^-10 hours 

Once the water mixing ratio exceeds the local saturation value, nuclei 
must be activated before water may condense in realistic time scales. Follow- 
ing nuclei activation, drops grow by the direct condensation of vapor and in- 
teract negligibly via collisions. In most atmospheric situations, the liquid 
water formed by the overall amount of excess saturation and the number of nu- 
clei available and activated results in a cloud with drop number densities 
ranging from 10^-10^ ni"^ and radii ranging from 1 to 10 ym.  It should be noted 
that classical condensation theory predicts a spectrum evolution through the 
stages of nuclei activation and condensation growth which is progressively 
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narrowing (Reference 33) ultimately yielding a cloud in which all particles 
are the same size. Thus, in classical condensation theory, size differential 
in the cloud spectrum can only result from the residue of size differential 
of nuclei. A limited amount of work has been devoted to the examination 
of droplet evolution in the nuclei activation and condensation growth stages 
in a turbulent environment (References 31,32). Although the "turbulence" 
models used in these investigations are seriously over simplified, it does 
appear that turbulent condensation theory provides significant broadening 
of the droplet spectrum which can dominate over the "natural narrowing" 
of classical condensation theory. We have made some preliminary investigations 
of more rigorous turbulent, second order closure versions of the droplet 
kinetic equations and find both broadening and narrowing effects which can 
result from the turbulent correlations WMif',W^' where w is the vertical 

velocity, e the potential temperature, and an overbar denotes a turbulent 
ensemble average. We shall report on these investigations in subsequent 
publications. 

For cloud droplets to grow significantly beyond the range of radii 
r < 10 ym up to precipitation sizes, collisional coalescence processes 
must be operative. The time scale for these collisional processes are highly 
variable when turbulence induced collisions are included in addition to the 
gravitational sedimentation collisions of classical coalescence theory. We 
find this result (which will be discussed in Section 3) consistent with the 
highly variable nature of natural clouds to grow to rain or drizzle size drops. 
A critical feature of the collisional growth process is the creation of a 
small number of drops much larger than the average. This long tail effect 
in the distribution function is the result of the increasing collision 
cross-section of large drops. 

The final stages of drop evolution occur when drops have grown signi- 
ficantly large enough to develop a significant precipitation velocity. These 
precipitable drops then leave the cloud and progress to the surface where 
they then leave the atmosphere. 

The precipitation model we shall describe in section 4 in the present 
work treats the first two stages of cloud evolution described above in very 
simple parametric fashion. The collisional growth and sedimentation processes, 
however, will be treated in some mechanistic detail that includes the effects 
of turbulence upon collisional growth. 

4.3 Turbulence and the Collisional/Coalescence Process 

We first consider the conceptual picture of atmospheric turbulence and 
Its influence on the collisions of liquid drops embedded in such an environ- 
ment. Atmospheric turbulence consists of the random motion of eddy struc- 
tures ranging from the largest energy containing scales to the dissipation 
scales where molecular viscosity comes into play. The largest scale is of the 
order of the largest characteristic macro-length L (e.g. the PBL depth, ter- 
rain dimension, etc.) while the smallest scale is of the order of the Taylor 
micro-scale X.    defined in terms of the turbulence energy dissipation e = OVA 
as Xn = (n /£)^ where r\    is the molecular kinematic viscosity. Similarly^ a 
micro-time characterizing the time scale of fluctuations of the dissipation can 
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be defined as    xo =(ri/e)% and a micro-acceleration cnaracxerizing tne accel- 
eration of the flow field within the eddie as ao = AQ/TO^.    The magnitudes of 
these quantities for the range of turbulence dissipation rates encountered in 
the atmosphere are present in table 4.1. 

Table 4.1 

Turbulence Length, Time, and Acceleration Scales in the Atmosphere 
for Dissipation Scale Eddies 

To       ^o/g 
(mVsec.^) ( ym   ) ( ms ) 

 -■ vi— 

0.001 1510 130 0.009 
0.01 846 42 0.05 
0.10 476 13 0.28 
1.0 268 4.2 1.58 

10.0 151 1.3 . 8.9 

Since drops of radius r will generally satisfy the condition r « L, 
the nature of turbulence induced collisions will turn first on the question of 
whether r > AQ or r < Ao. 

It can be seen that even for the highest dissipation rates, only drops 
greater than about 150 ym would be larger than the dissipation scale eddies. 
We conclude, therefore, that under most circumstances (and particulary for 
drop sizes in the crital range 1 < r < 50 ym ) a cloud droplet will execute 
its collisional dynamics within a dissipation scale eddy. The precise nature 
of the flow field within a dissipation scale eddy is not clearly understood 
at present; however, such flow fields must, of necessity, be characterized 
by a high shear rate. 

The average shear rates in the dissipation scale ed.dy can be related 
to the turbulence dissipation as (Reference 34) 

S ~ (£/n)^= VTO 

The first effect of turbulence upon the collision rate of cloud drops 
is thus to place them in a shear flow of average shearing rate S. Thus, two 
drops of radii Vi, Vi   lying within a collision cylinder will possess a re- 
lative velocity with respect to one another of magnitude 

AV^^^ =(ri + r^) s 

This collisional relative velocity mechanism, in contrast to that of gravi- 
tational sedimentation, does not require a size difference between the col- 
lisional partners. 

The second effect of turbulence is to create an acceleration field ao 
for the flow field of the drops in addition to that of gravity. Hence, aif- 
ferential size relative motion will be enhanced by the presence of the tur- 
bulent field. 
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The third effect of turbulence upon collisional encounter is for the 
drops with r > XQ.    This regime is the most complex involving the com- 
plication of the flow field of eddy scales larger than the Taylor scale. 
A simulation of the collision dynamics which may in some respects model 
this regime with an arbitrarily varying background velocity field but 
with turbulence induced shearing neglected Almeida (Reference 35) indicates, 
as one would expect, the enhancement of collisional efficiencies of 
such drops due to the agitation of the background field. However, 
the collision efficiencies of such large drops are already much larger 
than the minimal levels characteristic of drops in the 1-50 \im  range 
even in the absence of turbulence. In addition, the critical range 
for growth of 1-50 ym will be such that drops turbulently collide 
primarily by the shearing mechanism. We thus disregard the turbulence 
effects on drops with r > AQ and include the effects of turbulence 
on the shearing rate and acceleration of the flow field surrounding 
drops within dissipation scale eddies. 

Let us now consider the formulation of the collision kernel for the 
collisional encounters of such drops. The total collision rate per unit 
volume between two populations of drops of radius n  and number density 
ni and radius r^  and number density nj may be expressed as 

N = n^ n^ Vo (ri.fj 

where   VQ   (TJ, rj  is the collision kernel.     Five basic processes con- 
tribute to the collision kernel  in the atmosphere.    These are 

1. Turbulent Shearing 
2. Turbulent Accelerations 
3. Gravitational Sedimentation 
4. Brownian Motion 
5. Electrostatic Attraction 

In what follows, we restrict attention to the first three processes. Brownian 
motion is only expected to be important for particle sizes much smaller than 
the average cloud drop. No attempt is made to estimate the influence of elec- 
trostatic attraction. 

The collision kernel v.o "^^^ ^^ expressed as (Reference 36) 

Where Vj^ V2, V3 and the contributions of turbulence induced shearing, 
turbulence induced accelerations, and gravitational sedimentation resoec- 
tively . These are expressed as 

V, = -AVi2^^^ El (r,, rj^ r^^ 

V /TJ^ AVI2^S^ E2 (rj, r.) ^ r^2 2    ,    ' ■•- g 

V 3 =       AVil^^ E3 (ri, r2)-n r^^ 
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In the above AV12   is the effective relative velocity of the drops due to 
the shearing motion of the fluid expressed in terms of the shearing rate S: 

13" - 
,^       AVjs) - i"i2 S — 

where    S    is given in terms of the turbulent dissipation rate.    The collision 
cylinder radius is r^2 = (ri + ra).    The relative velocity   AVJs)    is the 
difference between the terminal  gravitational  sedimentation velocities of 
the two particles:        ., 

The form of   V^   (r^-)  depends upon the flow regime of the particles.    In the 
Stokes   range 

where    p^ p^    are the densities of drop liquid and surrounding fluid respec- 
tively and    n is the kinematic viscosity of the surrounding fluid.    The quan- 
tities  E^,    E^,  E3 are the collision efficiencies for each of the processes 
respectively.    These are defined in terms of^the cross-sectional  area    Q per- 
pendicular to the relative velocity vector AV12  within which the centers of 
the drops must lie if they are to collide compared to the geometrical   hard sphere 
collision cross-section of the two drops: 

h' i" "^ r^2 ' 

Although it is not indicated functionally, the collision efficiencies 
Ei are functions of the radius ratio of the colliding drops and the relative 
Reynolds number. For gravitational sedimentation, this number depends pure- 
ly upon the radii r^, rj. For shearing motion, however, the efficiency 
depends upon the shearing rate as well as the radii Vi    rj^  The collision 
efficiency E3 in the absence of turbulence is summarized in Reference 37. 
There are, as yet, no reliable calculations or measurements of the efficiencies 
Ej, E2 (or correspondingly an overall efficiency which depends upon shearing 
rate ) although the work in Reference 38 is noteworthy. 

We thus may summarize the three collisional processes of interest here 
by noting that of the three, shearing collisions are the only ones which 
are operative among drops of equal size; hence turbulence provides a mecha- 
nism (outside of the Brownian range) of coagulating drops of equal size which 
is otherwise not available in the more conventional gravitational sedimenta- 
tion picture of collisional coagulation. 

f 
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4.4    The Cloud Precipitation   (CP) Model 

4.4.1    The Division of Liquid Water Into Cloud and Precipitation Groups 

As described in section 2, the collisional  evolution of the droplet 
spectrum of the cloud is such that a small  number of larger droplets are 
created and characterized as the tail  of the cloud distribution.    Because 
the droplet sedimentation velocity is a strong function of particle size, it 
is not useful  to characterize the precipitation flux as an average over 
the entire liquid water distribution.    This is because the bulk of the drop- 
lets have negligible sedimentation velocities.    Rather,  it is useful  to de- 
fine a precipitation group as those particles vn"th sedimentation velocities 
greater than a certain minimum value.    This minimum value cannot be given 
by the cloud micro physical  process, but is determined by the overall 
macro-dynamics of the problem at hand.    This sedimentation velocity is 
selected so that a drop will fall over a characteristic macro-length in some 
characteristic macro-time.    We thus select (as a model  parameter for the 
precipitation process) a sedimentation velocity (or corresponding parti- 
cle size) which separates cloud droplets  (whose contribution to the sedi- 
mentation flux we neglect)  from drizzle or rain drops (which constitute 
the full  precipitation flux.)    Let us designate this velocity as    V*   and ^ 
the corresponding particle radius as    r^.    Since most dynamical  events 
within the PBL take place on a length scale of the order of 10 m   or less 
and on a time scale of the order of     1 hr.    we find the minimum precipita- 
tion velocity should be greater than or equal  to about  l.km/hrwhich_ cor- 
responds to the sedimentation velocity of a particle of    r^~    50 ym in still 
air.    The total  liquid water is thus divided into two groups:    a cloud 
group consisting of all  droplets with sizes    r < r* and a precipitation 
group with sizes    r > r*.    Let us now specify the various collisional  and 
and condensation processes which take place between these two groups. 

We choose not to describe the details of nuclei  activation and the 
dynamics of cloud spectrum formation.    These processes may be sunmarized 
in terms of two model  parameters:    the average cloud droplet radius Re 
and the non dimensional  dispersion of the cloud spectrum a^-.    For the 
present model, we choose to consider the limit oc = 0 and to specify Re 
as the single cloud-type parameter which for virtually the full  range of 
cloud types lies in the range 5 um<^Rc<20 ym.    Thus, given the total 
liquid water present as cloud, the cloud droplet number density nc is 
implied in terms of the cloud droplet average radius RQ.    It also becomes 
clear that in addition to the usual conservation equations for total  liquid 
water, two additional  conservation equations are required to determine the 
precipitation water content and the number density (or average size) of 
precipitation drops. 

With the cloud droplet variables    \, R^,    so determined,  three col-_ 
lisional  interaction processes and an evaporation process, then emerge which 
define the precipitation drop group characteristics.    These three collisional 
processes are the cloud-cloud collisions, cloud-precipitation collisions, 
and precipitation-precipitation collisions.  Cloud-cloud collisions whose 
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coalescences result in drops with radii greater than    r^    constitute the 
cloud - to-cloud precipitation conversion process.    Cloud-precipitation- 
precipitation collisions constitute the precipitation aggregation process. 
This latter process is only important in situations when the precipitation 
drop number density is very large.    When precipitation drops exist in other- 
wise unsatuated air,  evaporation of the precipitation drops takes place, and 
we term this process the precipitation evaporation process. 

4.4.2    Cloud and Precipitation Variables and Conservation Equations 

The usual  mixing ratios are given in terms of the average droplet sizes 
Re,  Rp and number densities n^, np    for cloud and precipitation groups res- 
pectively as 

■ I' 

He = 4/3    TTR^'   PQ/POO n^- 

HP = 4/3   ^Rp5   Po/Pco "p (4.1) 

H£ "  ^c  "^ Hp 

H    = H,, + Ho 

In Eqs.   (4.1) PV is the mass density of water in the vapor phase, 
while    P,a    is the iiidss density of the liquid water, and    poo    is the mass 
density of the mixture.    The mixing ratio for vapor is    Hv    that of 
cloud water    H^-,  and that of precipitation water    Hn.    The total  liquid 
mixing ratio is    H^    and the total  water mixing ratio is    H. 

The relationship between  the constituents is as follows.     If the mix- 
ture is unsaturated    (H < Hg),  then 

■     He    -    0 

H£    =    Hp (4.2) 

Hy      =      H   -   H£ 

In these statements it is assumed that the cloud droplets are in equili- 
brium with the vapor; the precipitation drops need not be in equilibrium. 
If the mixture is saturated (H > Hg) then 

Hv = Hs ■■ ,   , 

He = H - Hs - Hp (4.3) 

H^ = H^ + Hp 

For the general case, we may thus write 
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He = (H - Hs - Hp)7/(H - Hs) 

H^ = He + Hp (4.4) 

Hv = H - Hji 

Where ^(x) is the Heaviside function. 

It will be noted that in addition to the saturation mixing ratio Hg, 
the water-air mixture system possesses two degrees of freedom as we have 
constructed it consisting of cloud drops and rain drops. If H and hU 
are specified, all the water species variables are determined. In gener&l 
we shall utilize H and Hn as the two independent variables which de- 
termine the various water species variables. It can be readily seen that 
these variables are sufficient to fix the values of Hy, H,- » 3"° ^i 

The precipitation drop number density conservation statement is 

^+1_ (n V ) = N  - N (4.5) 
Dt ^ 8x. ^"p^i^   cp   pa 

In the above   Vni     is the average sedimentation velocity of the precipi- 
tation drops.    Vhe production of precipitation drops from cloud droplets 
by the cloud to precipitation conversion process is Ncp-    The loss of 
precipitation drops by self-collisions among the precipitation drops is 
Npa. 

The conservation equation of precipitation water is 

^ + l_(HV) = fi     +fl     -ft (4.6) Dt   "^ ax.  ^% pi^       cp       cc       pe 

The production rate of precipitation water by the cloud to precipitation 
conversion process is Hep.    The production of precipitation water by the 
cloud collection process is   Hcc-    The loss of precipitation water by _ 
evaporation of precipitation drops in unsaturated air is   Hpe-   J"^ various 
rates Ncp, Npa, Hep, Hcc, Hpe are described in subsequent sections.    Equa- 
tions (4.5) and (4.6) provide the additional dynamical  equations which 
fix the properties of the precipitation group, since ttiese equations deter- 
mine   r^p    and Hp, the average precipitation drop radius    Rp is determined 
the third of Eqs.   (4.1).    The conservation equation of total water mixing 
ratio is modified by the presence of a precipitation flux and becomes 

4.4.3   The Cloud Conversion to Precipitation    (CP) Process 

We now describe the CP process and develop expressions for the CP rates 
^cp. Hep.    Let   V  be the volume of any given drop and let Vj  be the volume 
of the smallest cloud drop under consideration.    Then    m =    v/v^ = (*;"/'i) 
is a size specification parameter.    The number density of drops of size 
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m   we denote as     n   .    The total  number of cloud droplets    n^    and precipi- 
tation drops    fip    are then given by 

m* 
n=y      n n=f"      n (4.8) c    ^_,      m "p    Zv        m ^^    ' 

m-I m-m^+] 

The distribution function of cloud droplets we denote as f = np,/n„. We 
may express the rate N   as      . m   / ^ 

cp 

Nop =  "|/2   t    ^ f^., v(.^.  .^^_^, (4.9) 

where   ^{r-\, ^2)    ""^ ^^^ collision kernel  discribed in section 4.3. 
The corresponding rate H      is 

m* 

ftcp = (Po/PJ(n^/2)  Z    (k-ni,-k)  f^ f^^_^ v(r,,r^^_, ) 

., ..   , . (4.10) 

which may be expressed as 

"cp= (Po/P>*%    , (4.11)    ^ 

A realistic calculation of the cloud to precipitation rate does require some 
information about the cloud droplet distribution function fni since the size 
m*    lies in the tail   region of the distribution. 

There is one of the \/ery few exact solutions to the colllsional 
coalescence problem which provides a frame work for parameterization of the 
CP process.    The solution for fm (^)  beginning with a single size of cloud 
droplets r-]  at time t=to subject to a constant collision  kernel Vg is 
(Reference 39) 

f^(t)    =    (1-T) T'""'' (4.1:?)       ; 

where    T    is determined by the solution of 

^   =      »o  (1-T)^ (4.13) 

with    cjQo  =    vo n^Q/2        where n^^    is the number density of cloud droplets at 
time    t=t    when collisions become to be more important than condensation 
growth in°determining cloud droplet size.    Substituting the form (4.12)  into 
the CP rate expression (4.9) we find 

N 
c P = "cVo   C-T)^ T"*-^ ''•^" 
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we shall use this result as the^basis for this simplified two group model by 
adopting the forms for Ncp and Hep given by Eqs. (4.11) and (4.14) with 
the following provisions: 

(1) The choice of v^ becomes an effective parameter 
of the model- Loosely speaking, it should be se- 
lected as an "average" collision kernel over the 
range 1 < m < m^ 

(2) For purposes of describing the conversion to pre- 
cipitation rate, the cloud droplet spectrum is 
approximated as originating as a single size at 
the radius r-j = R^ 

4.4.4 The Cloud Collection (CC) Process 

The collisional interaction of precipitation drops with cloud droplets, 
we assume, results only in coalescences which enter the precipitation group. 
The cloud collection rate N__ is then formally defined as 

CC 

^J CC        c p ^ f-*   ,,"'    "^        "^ 

We approximate this result as 

4.4.5, The Precipitation Evaporation Process 

The evaporation of precipitation drops in unsaturated cloud-free air 
has to be considered to complete the processes that balance the liquid 
water existing as cloud droplets and as precipitation drops. The process 
is represented by the precipitation evaporation rate fipe- We assume 
that all precipitation drops evaporate at a rate given by that of a 
droplet at the average precipitation size Rp. 

Let us now determine ti.e rate '"'pe • The evaporation rate from a drop- 
let of radius Rp in stagnant air may be expressed as 

('..); 
4ijR„D n^ {p^yP^J/p^ (4.-16) 

stag    P  P 
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where D is the diffusion coefficient, 
at the surface of the particle and Puoo 
ment. * 

Pyi  is the saturation vapor density 
IS the vapor density of the environ- 

V.HnMr.n.i'?^!^^ '". ' convective flow, the evaporation rate is enhanced. 
InH fhi, ° ^^^'°"^^^^! ^!^" developed to model the increased evaporation and they are generally of the form 

(npe)     = ("pe) 
^ '  conv   ^ ' stag 

(1+C R 
3, 
'2 ^ 

) (4.17) 

where the Reynolds number    Rg    is based upon the droplet diameter and sedimen- 
tation velocity relative to the air, and the Schmidt number     s"'    is ?or 
the vapor diffusiomnto the ambient     The coefficient    C    has the value 
C-0.276  recommended  in Reference 40.    The precipitation evaporation rate 
is then expressed as 

V ~- "^^^SV^c 
when H<H. and H >0. 

P 

l+0.276( 

When    H>H  , 
s 

2VR 
n   '    c [ H^CH-Hp)   ] 

H. pe =0. 

(4.18) 

4.5      Illustration of the CP Model   for the Homogeneous Cloud 

Vertical   inhomogeneity is  an  imoortant aspect of any clnud and precipita- 
tion process.    However, preliminary to incorporation with the general,  turbu- 
lent, vertically inhomogeneous PBL model we may examine some of the character- 
isticsof the CP model   for a homogeneous cloud with given  turbulence and liquid 

We thus consider a homogeneous cloud which at time t = 0 consists of a 
given amount of liquid water   H£    existing completely as cloud water 
[Hp(t - 0)^:0] with droplets of radius Re.    We consider the presence of 
a uniform precipitation flux divergence term which we represent as 

8X. (HJ„J = H V    /£ ' P pr       p pz' c (4.19) 

where    l^ is a modeling parameter for this homogeneous illustration only re- 
presentifig an equivalent characteristic vertical  gradient.    We further as- 
sume that the liquid water total    H£    existing initially is not replenished 
by further decreases in saturation mixing ratio as water precipitates from 
the cloud. 

To carry out specific calculations we must specify the values of the 
collision efficiency functions    Ej, E2, E3    and the average collision kernel 
VQ in the cloud-precipitation conversion  rate,    Eq.   4.14.    We represent v 
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as the geometric mean of the extreme kernels over the collision range of 
partners from r, to r*: 

V 
0 

= / v(ri, rJvCr^, r^) (4.20) 

This representation has the property vo ^ o as v(ri,r-i) -y o    as  indeed 
it should for the model in which the original cloud is considered to con- 
sist of single size droplets. For the collision frequencies, we assume 
E2 ~ Eg since both involve differential setting velocities. We utilize 
the summary formulae thats in Reference 41 for these collision efficiencies. 
A fundamental gap is the absence of data for collision efficiency Ei of 
drops colliding in the presence of shear. Although this efficiency should 
depend upon the relative Reynolds number of the colliding partners (and 
the shear rate), there seems to be a reasonable validation of data over a 
wide range of shear with a constant value Ei = 0.36 (Reference 41), 
We adopt this value for these illustrations. 

The evaluations of the cloud and precipitation variables for a range 
of turbulence dissipation rates and for a nominal liquid water level for 
the conditions of Table 4.2 are shown in Figures 4.1 through 4.4. The 
general trends as well as detailed structure exhibited are consistent with 
model conditions of this illustration. We must emphasize, however, that 
these results must be viewed against the two fundamental conditions of the 
illustration: (1) Cloud water He and precipitation water Hn originate from 
a fixed total liquid water content Hj;, and (2) The cloud is homogenous with 
a precipitation flux divergence uniformly distributed over the cloud given 
by Eq. (4.19). All cases are terminated when the liquid water is reduced 
to 5% of the original cloud water. 

The most basic and general trend in these illustrations is in the 
decrease of the time to reach a maximum precipitation drop number density 
as well as the time for onset of significant precipitation flux as the 
turbulence levels rise. This result is simply a manifestation of the in- 
creased conversion to precipitation rate Ncp as the turbulence collision 
rate increases. The second general trend is in the magnitude of the pre- 
cipitation flux ranging from 0.08 cm/hr at the lowest turbulence level to 
0.35 cm/hr at the highest turbulence level. 

It should be noted that at the highest levels of turbulence 
(e = 10 m^ sec^) (Fig 4.5), a significant precipitation flux is established 
on the order of several tens of minutes. Such turbulence levels may be 
characteristic of the dynamics within cumulus clouds and it is of interest 
to examine the evolutions predicted here with those of a "standard" (albeit 
unverified) precipitation model for the cumulus cases (Reference 42). 
Kessler model results are shown in Fig 4.6 for the same illustration con- 
ditions of Figs 4.1-4.5: The time scales and general evolution seem com- 
parable to the present model for turbulence levels e > 1 m^ sec^ It 
should be noted, however, that the Kessler model inherently utilizes 
the f4arsha 1-Palmer distribution function for rain drops as an empirical 
input,characteristic of rain from cumulus clouds. The CP model has no such 
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emperical   input restricting it to such cumulus parameterizations.    Thus, 
in the absence of updraft,  the high turbulence levels of the CP model 
generate precipitation of high number density and moderate size 
(Rp ~ 130ym).We believe this is physically consistent with strong turbu- 
lence in the absence of    updraft.    With updraft present,  the drops gene- 
rated by the CP process would be maintained in contact with the cloud 
droplets for a longer duration before raining out and hence grow to  larger 
size.    Thus, while the Kessler model  by virture of its parameterization is 
incapable of discribing the stratus case in absence of updraft, we believe 
the CP model  when integrated with fluid dynamic mean motion including an 
updraft, would predict rain drop sizes consistent with the Kessler model 
and the Marshal-Palmer parameterization. 

These illustrations indicate that the model  and its parameters 
exhibit results in terms of time scales and magnitudes of precipitation 
sizes and fluxes which are consistent with those occuring naturaly in 
the atmosphere.    The turbulence levels which effect these results are 
typical  of naturally occuring turbulence levels in the atmosphere. 

.„, -; Table 4.2 

Conditions For Illustration of the CP Model   For a Homogeneous Cloud 

r^ 50 ym 

R 10 ym 

H 0.001   kg/kg 

£ 1   km 
c 
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Figure 4.1(a) Evolution of precipitation water mixing ratio Hp for a homogeneous 
cloud with all water existing as cloud water H^ at time t = 0. 
Lowest turbulence level of these illustrations, e = .001 m2/sec3. 
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Figure 4.1(c).  Evolution of precipitation flux corresponding to Figure 4.1(a). 
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Figure 4.2(a) Evolution of precipitation water mixing ratio Hp. 
level  e = 0.01  ni2/sec3. 

Turbulence 



• * 

00 
00 

40E-3^ 

.35E-3.. 
€ = 0.01  mVsec^ 

3 4 5 

TIME( HOURS ) 
e 

Figure 4.2(b) Evolution of average precipitation drop radius corresponding 
to Figure 4.2(a). 
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Figure 4.2(c).  Evolution of precipitation flux corresponding to Figure 4.2(a) 
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Figure 4.3(a).  Evolution of precipitation mixing ratio Hp for turbulence 
level e = 0.1 m2/sec3. 
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Figure 4.3(b) Evolution of precipitation drop average radius corresponding 
to Figure 4.3(a). 
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Figure 4.3(c).  Evolution of precipitation flux corresponding to Figure 4,3(a) 
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Figure 4,4(b).  Evolution of precipitation drop average radius corresponding to 
Figure 4.4(a). 
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Figure 4.4(c).  Evolution of precipitation flux corresponding to Figure 4.4(a) 
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Figure 4.5(a).  Evolution of precipitation water mixing ratio Hp for 
turbulence level e = 10 m2/sec3. 
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Figure 4.5(b). Evolution of precipitation drop average radius corresponding 
to Figure 4.5(a). 
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Figure 4.5(c).  Evolution of precipitation flux corresponding to Figure 4.5(a) 
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Figure 4.6(a) Evolution of the precipitation water mixing ratio for the 
homogeneous cloud evolution conditions of Figures 1-4 as 
predicted by the Kessler model (Reference 42). There 
is no dependence upon turbulence in the Kessler model. 
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5. A.R.A.P. MODEL PROBLEMS 

Model difficulties may be divided into four areas: those involving 
the basic turbulent transport model, those involving additional physical 
mechanisms not incorporated within the model, those involving the numerical 
complexities of faithfully following the modeled equations, and those 
involved in obtaining adequate field data to rigorously test the accuracy 
of the model and to drive it under cases of practical interest. We 
are actively involved in all but the last experimental area. We believe 
we can best contribute to this last area by exercising the model to determine 
which parameters have the strongest influence on the model behavior and 
in this way help to give some guidance to observers as to which parameters 
most critically need to be measured. A discussion of the first three 
areas are given in the following sections. 

5.1 Turbulent Transport Model 

An important problem area of the turbulent transport model is its 
inability to correctly predict the horizontal variance under conditions 
which lead to a strong disparity between the horizontal and vertical 
velocity variance. As pointed out in Section 3.1 in Reference 18, the 
model provides for a Monin-Obukhov similarity for the horizontal velocity 
which does not exist in the data. Similarly the horizontal velocity 
variance predicted by the model for free convection departs significantly 
from the data near the top and the bottom of the layer as shown in 
Figure 3.3.2 of Reference 18. Perhaps even more important the model cannot 
represent the transition to strongly stratified conditions where the flow 
becomes essentially two-dimensional. As explained in Reference 18, we 
believe the principal difficulty is the anisotropic nature of the 
turbulence scales. In all of these example problem areas the vertical 
scale becomes much less than the horizontal scale in regions of the flow. 
Lewellen and Sandri (Reference 16) attempted a modification to our basic 
single scale model which permitted the horizontal macro-length scale 
to be different fran the vertical macro-length scale. The vertical scale 
was identified with the single scale as previously modeled and the 
horizontal scale was allowed to vary with the mixed-layer height. This 
preliminary attempt at a 2-scale model did successfully eliminate the 
Monin-Obukhov scaling of the horizontal velocity variance and replace it 
with a dependence on the mixed-layer thickness which is consistent with data. 

However, further tests of the 2-scale model as formulated by Lewellen 
and Sandri (Reference 16) have shown that it lacks the generality desired 
for adaptation into the basic model. The most noticeable failure was 
that in strongly stratified flow it did not force the ratio of the 
vertical velocity variance to the horizontal velocity variance to approach 
zero to permit a transition to two-dimensional turbulence. The coupling 
between the two time scales given in the Lewellen and Sandri (Reference 16) 
formulation did not allow this decoupling. We are currently reformulating 
the two scale piodel to remove this problem. 
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If the basic Rotta term for return to isotropy is reintrepreted as a 
tendency for axial symmetry about the 3 coordinate axes, then this part of the 
pressure strain term may be written as 

II. . 
ij 

i (u7u--^6 ) (5.1) 
T   1 J  3   IJ 

---^ t^-^(s-^li^lj)^ 

1 rTTm- . q^ 
"37 [UTOJ-^ (6i. - 62^62^)3 

-37 ^W^i - f '^'U - %%^^        . ^^'^^ 

As long as there is the single time scale for the three return-to-axial 
symmetry terms, Eqs. (5.1) and (5.2) are identical. However, when one of the 
time scales is assumed to be unequal to the other two, then Eq. (5.2) 
provides the basis for a correction to the Rotta terms, nannely. 

1 ,   q2 ^ , 
jr. . = - — (U. U . - -^ 6. .) 
IJ    T  1 J  3  1J 

J  (i-T    ^■^-   P%-%'h^^ l^-^' 1 
The subscript (1) represents the single coordinate direction about which the 
flow is assumed to be biased. The time scale T is generally taken to be the 
eddy turnover time A/q. The analogous turnover time in the biased direction 
would appear to be Ai/(uiUi)^^^. When T^ « T, Eq. (5.3) suggests that 
energy will be taken out of the Uiu^ components on a time scale of 
Ai/(u,u, )^^'^. This will provide a tendency towards equalibrating the two time 
scales even when the length scales are quite unequal. We are currently 
proceeding to rework the analysis of Lewellen and Sandri (Reference 16) 
following the formulation suggested by Eq, (5.3). This approach appears 
to have the potential for duplicating those results and providing the     . 
transition to nearly two-dimensional turbulence under conditions of 
strong stratification. 
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5.2 Uncertain Physical Processes 

We have attempted to incorporate into the model those processes which 
appeared most pertinent, but a number of unmodeled phenomena may play a role 
under some conditions. Certainly the micro-scale cloud physics addressed in 
Chapter 4 plays an important role in determining the rate of precipitation to 
the surface under conditions conducive to rain or drizzle. We believe the 
formulation described in Chapter 4 forms the basis for incorporating this 
phenomena into the basic model, but at the present time the interaction of 
turbulence and cloud microphysics remains an area of considerable uncertainty. 

Surface breaking along the air-sea interface is a process not included 
within the model which is important in determining aerosol concentrations in 
the surface layers and may also be important in determining the effective zo 
of the surface of the ocean. 

The role of internal waves within the atmospheric marine boundary layer 
is another uncertain phenomenon. They almost certainly exist a significant 
fraction of the time. How important their interaction with the turbulent 
transport within the layer is, remains to be determined, although the sample 
calculation of Appendix A demonstrates that there can be a strong interaction 
under some conditions. 

A more speculative possibility is for a double diffusive instability to 
exist along the top of the boundary layer when the air in it is both cooler 
and more moist than the air above it. The boost that radiation provides for 
the transport of heat provides a difference in effective diffusivities for 
heat and moisture which might drive a double diffusive instability. That is, 
a finger of warm dry air protruding into the boundary layer from above has the 
potential for cooling faster than the moisture mixes into it and, thus, 
continuing to fall because it becomes heavier than the surrounding boundary 
layer air. 

Under some unstable conditions the boundary layer turbulence penetrates 
well into the troposphere in the form of cumulus clouds. These cumulus clouds 
play an important role in the coupling of a global atmospheric model to the 
surface. This penetrative turbulence is beyond the capability of the current 
model. 

5.3 Numerical Difficulties 

The entire spectrum of turbulent flow phenomena might be interpreted as a 
numerical problem since the Navier-Stokes equations provide a rigorous 
formulation. The difficulty is that, although these equations may be solved 
rather straightforwardly with today's computing resources for simple boundary 
conditions, the large range of scales involved in the motions of the 
atmospheric boundary layer prohibits a complete detailed solution. Since 
these motions range from the small dissipative eddies, as small as 10-3 
meters, it is essential that some averaging and approximating is required for 
any practical model. 
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The present model requires at least an averaging over one spatial 
coordinate to form a 2-D unsteady model. Most of our calculations have used 
the 1-D unsteady model, which goes even further and averages over both 
horizontal directions. This program which assumes horizontal homogeneity is 
appropriate for many, if not most conditions over the open ocean, provided the 
role of 2 and 3-D motions are adequately parameterized within the turbulence 
model. But other conditions such as that occurring along irregular coast 
lines cannot be represented by either the 1-D or 2-D models. 

Chapter 3 details our current attempt at providing increased averaging in 
the vertical direction so that we can gain the potential for resolving some 
completely 3-D features with the model. 
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6. FUTURE PLANS 

The dynamics of the temperature inversion at the top of the boundary 
layer represents one of the regions involving the most uncertainties in 
current planetary boundary layer models. Below this altitude, dynamics are 
dominated by turbulence, while above it, internal gravity waves dominate. The 
mutual feedback between turbulence and waves in this transition region 
provides a complex interaction which controls such important phenomena as peak 
values of C^. We plan to continue the type computations given in Appendix A 
which allow the large essentially 2-D features, either internal waves or 
turbulent eddies, to be resolved as part of the ensemble mean motion while the 
smaller scale turbulence is treated by the turbulence closure model. By 
allowing the computation to resolve a significant part of the interaction, 
dependency on uncertainties in the closure model are reduced. The results can 
then be time averaged to compare with simpler 1-D models or scaling 
relationships. Principal effort, will be expended on the 2-D calculations 
but we expect to complete sufficient analysis of these results to suggest 
means for improving the simpler representation. 

We plan to continue our effort described in Section 4 to incorporate more 
cloud physics into our model. The current model is based on quite simple 
physics. Thermodynamic equilibrium is assumed to exist between liquid and gas 
phase water at all times. The liquid which exists is assumed to be in the 
form of small droplets of specified size. The droplet size is constant in 
space and time. Only the number density varies as the liquid water content 
varies. In actuality, we would expect the droplet size distribution to be 
controlled by a complex interaction between the turbulent fluctuations in 
relative humidity and the ambient concentration of condensation nuclei. Since 
the droplet size distribution is such an important variable in determining 
visibility within a fog of given liquid water content, we are attempting to 
make use of the analytical and experimental studies performed by other NASC 
contractors on fog droplet dynamics to incorporate, at least, some droplet 
growth dynamics within our model. The important interaction between thermal 
radiation and droplet size will also be included. 

A third task for the future calls for us to exercise the model to 
investigate conditions which lead to the initiation of fog or low-level 
stratus. Concurrently, with extending the model's capability, we wish to 
utilize it to exemplify phenomena of interest to the Navy. At least some of 
these calculations will be in support of the fog model evaluation study being 
carried out by Calspan. 

We also plan to explore the feasibility of 2 major extensions of the 
model. We would not expect to complete these extensions within the next year, 
but do expect to determine the relative attractiveness of proceeding with 
these extensions. The first of these calls for exploring the use of 
second-order closure techniques to improve the parameterization of the effects 
of cumulus clouds in global atmospheric models. The intent would be to view 
the occurrence of cumulus as a penetration of boundary layer turbulence well 
into the troposphere. A first step in this exploration would be to become 
more familiar with how the effects of cumulus are parameterized in current 
models. The final task calls for exploring the extension of our model to 3 
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dimensions. This should be an attractive alternative if the 1-D integral 
model described in Chapter 3 works sufficiently accurately to allow the 
vertical distributions of the primary variables to be represented by just a 
few grid points. A code which is no larger than our present 2-D, unsteady 
model could then be constructed to examine completely 3-D, unsteady events 
which happen in real coastal environments. 

The development and testing of such a 3-D Code based upon a general 
hybrid treatment of the full 3-D problem described by second order closure 
turbulence theory is a task of major proportion. We feel that validation 
of the hybrid method for the general 1-D homogeneous case including the 
presence of an inversion, stratus cloud, and radiative transport should 
be demonstrated before commitment is made to develop such a 3-D hybrid/ 
integral code. The development and validation of the inversion layer 
and moisture transport including the presence of stratus cloud for the 
1-D homogeneous case as noted on page 20 is our immediate near term goal 
for the hybrid procedure. 

We expect to pursue this research in close cooperation with NEPRF 
personnel in order to be responsive to particular questions which may 
arise during the course of this investigation. 
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APPENDIX A 

A Numerical Study of Breaking 

Kelvin-Helmholtz Billows Using a 

Reynolds-Stress Turbulence Closure Model* 

by 

R. I. Sykes and W. S. Lewellen 

Aeronautical Research Associates of Princeton, Inc. 

50 Washington Road, P.O. Box 2229 

Princeton, New Jersey 08540 

ABSTRACT 

A two-dimensional numerical study of breaking Kelvin-Helmholtz billows is 

presented. The turbulent breaking process is modeled using second-order 

closure methods to describe the small-scale turbulence, whilst the large scale 

billow itself is calculated explicitly as a two-dimensional flow. The 

numerical results give detailed predictions of turbulence levels and time 

scales, and are consistent with laboratory and atmospheric observations. Two 

general predictions of the model are that the structure of turbulent 

temperature fluctuations is very different from that of the velocity 

fluctuations, the former being much more striated, and secondly that the 

timescale of the growth and breaking process is virtually completely 

determined by the initial velocity shear. 

♦Submitted for publication in J. Atmos. Sci., September 1981 
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1.  Introduction 

Shear instabilities are now widely recognized as a significant mechanise 

for producing turbulence and mixing in stably-stratified fluids. There are 

numerous observations of "billow turbulence" in the atmosphere and oceans (see 

Maxworthy and Browand, 1975) and these events have been associated with 

Kelvin-Helmholtz instabilities of the wind profile. Laboratory studies by 

Thorpe (1973) show similar vortex roll-up features and the generation of a 

turbulent layer of fluid which mixes and spreads the initial shear layer 

before decaying back to a quiescent flow. 

The initial stages of the instability are now well understood. Finite 

amplitude numerical computations by Patnaik, et al. (1976), Peltier, et 

al. (1978) have confirmed the linear stability predictions of growth rates and 

mode structure of the growing waves, and have gone on to calculate the roll-up 

of the vortex layer. However, these laminar calculations at moderate Reynolds 

numbers have been unable to identify the secondary instability which results 

in the breakdown of the vortex into a turbulent layer. Davis and Peltier 

(1980) made calculations up to a Reynolds number of 500 based on shear layer 

thickness but failed to produce a secondary instability. In the latter paper, 

the authors calculated local Rayleigh numbers in the flow, and showed that 

with a Reynolds number of 500, a region of very high Rayleigh number was 

produced in the rolled-up vortex. They speculate that this region is in fact 

convectively unstable, but that the most unstable modes will be longitudinal 

rolls since the flow is strongly sheared. This hypothesis accounts for the 

fact that the instabilities have not been triggered in the two-dimensional 

numerical models. 
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The aim of the present study is to model the breakdown of the rolled-up 

vortex layer and the subsequent spread and decay of the turbulence using a 

second-order closure scheme to describe the three-dimensional, small scale 

turbulence field. Second-order closure models have been used extensively to 

study horizontally-homogeneous atmospheric boundary layer flows, and in 

particular are capable of representing the major dynamical processes involved 

in turbulent convection (see Wyngaard and Cot6, 1974; Lewellen and Teske, 

1975; Yamada and Mellor, 1975). [There are difficulties associated with the 

turbulent transport of turbulent kinetic energy (see Zeman and Lumley, 1976; 

Andre, et al., 1975), but this is not a serious problem for the prediction of 

the mean profiles of the major second-order quantities.] Since the model 

calculates the growth of turbulent correlations in an unstable environment 

moderately accurately (because the growth is driven directly by production 

terms in the equations without recourse to empirical closure), we may 

reasonably expect the results of the calculation to have some validity. One 

would not have the same expectation of, say, a mixing-length closure model, 

since the timescale of the growth of the turbulence is the same as the mean 

flow timescale, while the mixing-length model implicitly assumes that the 

turbulence is in local equilibrium. Thus turbulent stresses and heat fluxes 

would be generated as soon as the density profile became unstable if the 

mixing-length were related to the stability as in the model of Orlanski and 

Ross (1973). 

As we shall demonstrate, the second-order closure model produces results 

which are certainly qualitatively correct. Quantitative data on turbulence 

quantities is not sufficiently detailed to make any meaningful assessment of 

model accuracy, but there are more general quantities associated with the 

breakdown which can be used for comparison.  There are estimates of the 
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timescale of the turbulence decay and measurements of the final states from 

the experiments by Thorpe (1973), for example. The final state of the shear 

layer is an important quantity in deciding the importance of Kelvin-Helmholtz 

instability as a mixing process in stratified fluids, since this is a measure 

of the total amount of mixing produced by the event. Another source of data 

is high-resolution radar probing of the atmosphere, where vortex roll-up 

events have been reported by many investigators, as discussed in Chapter III 

of the main report. However, although it is possible to estimate the 

intensity of the turbulent fluctuations from the intensity of the radar echo, 

the measurements of the initial wind and temperature profiles immediately 

prior to the instability are generally inadequate for a crucial test. 

In spite of the lack of detailed information, there is certainly 

sufficient data to determine whether the turbulence model is reasonably 

accurate, and hopefully some of the numerical results will prompt more 

detailed measurements. 

2.  Model Equations and Numerical Solution 

The second-order closure scheme employed in this study has been described 

in detail by Lewellen (1977) and we therefore present only the final 

equations. We consider incompressible, Boussinesq flow, and write the 

Reynolds-averaged equations with turbulent correlations denoted by an overbar. 

For two-dimensional motion in the (x,z)-plane, with z in the upward vertical 

direction we define a stream-function y, such that u = ay/dz, W ^ - Sy/ax. 

Then the vorticity ^ = V'^y, and the equations of motion are 

li   IL. li     g aT   a2 —   a^ ,— —\ ^ -^l — 
—^ + U+W    =   uw -    (uu - ww) +    uw 
at   ax   3z     TQ SX  az^    axaz        ax^ 

(1) 
I 
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3T        ,,   aT 3T 
— + u — + w — 
at ax az 

a — a — 
-- ue - — wb 
ax az (2) 

Dt 

au      „— au a   /    au^ 
- 2uu —  -   2uw —  ■'"V   — IqA 

ax az        ^ ax \     ax 

a  /     au' 
+ Vc—    qA 

az V     az A  \ 3  / 3A (3) 

— v^ 
Dt •ci(-^)-c^(..f)-^(V^-f)-^       (.. 

D    -T 

Dt 
w 2uw — 

ax 

^— aw        2q — 
2ww — + —^ we   + 

az      To 

a   /     dw' 
V   —   qA 

^ ax \      ax 

^ az r    az /      A \ 3 /        3A (5) 

Dt 

— aw      — aU        q — a   /     auw 
uw     =     - uu —   -   ww —   + -^ uo   +   v_ — IqA 

ax az       Tf c ■■ ax \      ax 

a   /     auw 
+ vc —   qA az v    az ,    uw 

A (6) 
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D     3T         3T         3U         au a   /     3ua 
— uQ     =    - uu —  -   uw —  -   uS —  -   wd — +  v^ — (qA 
Dt 3^ 3Z 3x 3z ^3x1        3x 

3   /     Sue 
+   Vr —     qA 3Z    r       3z 

Aa — 
A 

(7) 

D _ 3T 3T 
— we = - ww -    WW 
Dt 3X 3Z 

—  -  ww —  -   ue 
3W        — 3W 3    /      3wb 
—  -  we —  +  V   — (qA 
3x 3z        ^-3x1      ax 

3  /     awe \     Aq -7 ^ -fl. -7 m 

Dt 

^       3T o— ST   ^ 3   /  ,   3e2 
- 2ue —  -   Iviti —  +   V   — jqA 

3X az        ''3x1      3x 

+ Vr —   qA 
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(9) 
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D 
— A 
Dt 

A /— au    — 3u    — 3W    — aw 
0.35 — I uu — + uw — + uw — + ww ~ 

3x az 3x az 

+ 0.6bq   +   v^-^  fqA^W   v^-^  U^ 
ax \     ax 9z \     az 

0.375 0.8A _a.   — + —~ _     wo 
^'    To 

(10) 

In the above, (U,W) is the mean velocity, T is the mean temperature, 

(u,v,w) is the turbulent velocity fluctuation, e is the temperature 

fluctuation, and q = [u^ + v^ + w'^]^''^. A is a length scale, and appears in 

the modelled terms in the Reynolds-averaged turbulent correlation equations. 

The values of the empirical constants are as follows: b = 1/8, A = 0.75, 

VQ = 0.3, and s = 1.8. These values were previously chosen to match model 

results with a set of experiments with simple geometries as described by 

Lewellen (1977). 

For the Kelvin-Helmholtz instability calculation, we begin with a profile 

of temperature and velocity, viz. 

Tn   +   ^T   tanh - 0 6 (11) 

AU   tanh ^ 
6 (12) 
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Note that velocity and temperature both have the same profile shape. The 

initial conditions define a Richardson number Ri = (g/To)(AT6/AU2), which will 

be the basic dimensionless number in our experiments. The problem also 

contains a Reynolds number, but since we have omitted explicit laminar 

diffusive terms from the equations of motion, we are effectively studying the 

high Reynolds number limit. 

In order to begin the integration, we have to specify initial values for 

the turbulence energy, q^, and the length scale A; in the calculations 

reported here, all other turbulence quantities were initially set to zero. A 

perturbation vorticity was also added so that the instability would amplify 

this disturbance and produce the vortex roll-up. The specification of these 

initial conditions will be discussed in the next section. 

Periodic boundary conditions were employed in the x-direction, and the 

length of the domain was chosen somewhat larger than the wavelength of the 

fastest growing linear mode. This choice is suggested by the nonlinear 

calculations of Patnaik, et al. (1976), which show that the longer waves grow 

to larger amplitude, and may therefore dominate the finite amplitude 

development of the wave. For most of our integrations, a domain length of 156 

was used, although some runs were made with different lengths to investigate 

the sensitivity. . 

The boundaries in the z-direction were placed sufficiently far from the 

shear layer for them to have negligible effect on the flow development. A 

zero normal gradient condition was specified on all flow quantities on the 

upper and lower boundaries. 

The equations of motion are discretized on a finite-difference grid which 

is uniformly spaced in the horizontal but has finer vertical resolution in the 

vicinity of the shear layer. The equations are solved using centered spatial 
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derivatives, and an ADI scheme for the temporal derivative. The advection 

operator conserves first and second moments apart from time-dependence errors 

arising from the use of explicit advective velocity components in the ADI 

scheme. The time-stepping is made more stable by the introduction of a 

coupling between the mean variables and the turbulent fluxes by the artifice 

of an additional implicit eddy diffusive flux which is explicitly subtracted 

when the correct turbulent flux is added (Lewellen and Sheng, 1980). Provided 

the time-step is sufficiently small, the errors introduced by this procedure 

will be negligible. 

Finally, the Poisson equation for the streamfunction is solved directly 

using the decomposition method of Swarztrauber and Sweet (1975). 

3.  Results 

We consider an initial state, as described in the Section 2, given by 

To + AT tanh - {13a) 
6 

U  = AU tanh - ^ (13b) 

which defines a Richardson number Ri = (gaAT/ToAU-^). This is in fact the 

minimum gradient Richardson number, defined by Ri^ = l{g/Jo){'dl/dz)']/{6{i/dz)^, 

which occurs at z = 0. Linear inviscid theory (Miles, 1961) shows that the 

flow is stable to small perturbations provided Ri >  0.25. 

We first present detailed results from a calculation with Ri = 0.1. In 

this example, we applied a sinusoidal (in x) variation to the vorticity in 

order to initiate the instability. The perturbation vorticity amplitude of 
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0.1iiL)/6 is quite large; this is because we are mainly interested in the 

finite-amplitude breaking of the billow and the subsequent turbulent 

development, so that we do not wish to spend time computing the initial growth 

from a very small perturbation. Checks were made to ensure that the initial 

perturbation was sufficiently small that it did not influence the 

finite-amplitude development. 

The turbulence energy q^ was initially set at IO-^AU^ throughout the 

domain, with the turbulence length scale. A, set equal to 0.46. The 

turbulence energy is initially small enough to be effectively zero, but the 

initial length scale does have some effect on the results. Variations in 

these initial values will be discussed in more detail in Section 6 below. 

The integration was performed using a domain of length 156 and a height 

of 126 centered on the mid-point of the shear layer. The computational mesh 

consisted of 41 x 61 points, with 41 points spaced uniformly in the 

horizontal, and a non-uniform vertical mesh giving a grid spacing of 0.l6 in 

the central region and expanding out to roughly 0.26. 

Figure 1 shows a sequence of contour plots of the dimensionless 

temperature field, (T - TQ)/AT, at dimensionless time x = 1.5, 2.8, 4.3, 5.8, 

7.3, and 11.8, where T = t{gAT/TQAU). Corresponding plots of the small-scale 

turbulent energy q^/AU^ are presented in Figure 2. The billow develops 

initially as an effectively laminar flow with a growing vortex core in the 

center, and thin braids forming between the cores. The initial turbulent 

perturbation in q^ is amplified slowly in the braids where the shear is 

highest, and the local Richardson number is lowest. At T = 2.8 the 

instability has vertically reached its maximum amplitude, with temperature 

contours quite convoluted in the vortex core, and the braids have become very 

thin. At this stage the temperature field is statically unstable in the core. 
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and the q^ contours show growth of turbulence associated with the buoyant 

instability, although the turbulence is still relatively small everywhere with 

the buoyantly produced turbulence in the core comparable with the turbulence 

levels in the braids. 

At the next time, T = 4.3, most of the temperature structure in the core 

has been mixed by the turbulence which has reached a relatively high level 

around the outer part of the core; the maximum value of q^ is O.ISAU^. The 

core has already begun to spread horizontally, although the braids are still 

quite distinct. At T = 5.8, the braids have been mixed, and the turbulence 

has spread throughout the layer in the horizontal. There is evidence of 

smaller scale disturbances in the temperature field, and a movie of the time 

evolution shows them to be travelling wave-like disturbances moving along the 

top and bottom of the layer, and also weakly rolling up in a manner similar to 

the original instability. However, they are also being mixed by the high 

background turbulence so that they do not persist long. There is also some 

remnant of the original large scale vortex which continues to slowly turn the 

isotherms. We can still identify the regions of production of the turbulent 

energy, since the level of q^ in the center is about twice the level at the 

edges of the domain. 

The trend toward flattening the isotherms, and spreading the turbulence 

horizontally continues until at the latest time, x = 11.8, there is virtually 

no further mean motion, and the turbulence is almost homogeneous in the 

horizontal. The turbulence level has dropped to 0.022AU^ at this stage, i.e., 

almost a factor of 10 below its maximum amplitude which occurred around 

T = 4.3. 
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The evolution described above is qualitatively similar to the turbulent 

breakdown of Kelvin-Helmholtz billows generated in the laboratory as described 

by Thorpe (1973). In the tank experiments, the small-scale turbulence is 

generated in the vortex cores, and spreads horizontally to amalgamate the 

billows at dimensionless time of roughly x = TQ + 2, where TQ is the time at 

which the fine-scale turbulence first appears. Since TQ ~ 3 in the numerical 

integration, the obsesrvation that the turbulence merges horizontally at some 

time between T = 4.3 and x = 5.8 is quite consistent with the experimental 

data. Furthermore, the thickness of the region of turbulent fluid increases 

slowly after merging in the horizontal and seems to reach an equilibrium level 

near the end of the integration. This is again consistent with the 

experimental observations of Thorpe (1973), which show the layer increasing in 

thickness up to x = XQ + 7, i.e., x = 10 in our case. Also the 

non-dimensional height, R|_ = g{AT.h)/(2AU'^) where h is the thickness of the 

turbulent layer, reaches a value of about 0.4 in accordance with the 

experiments. 

Some insight into the dynamics is obtainable from examination of the 

energy budgets. In Figure 3, we plot the roll energy, EK, and the small-scale 

turbulence energy, EQ, defined by 

)^62   jj 
EK     =    -^^    II      {[u-u(z)]2 + w2}dxdz (14) 

''''   JJ EQ     =    -^    II     q'dxdz (15) 
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where 

if u(z)  = 7 /  Udx (16) 

We can see the rapid initial build-up of roll energy as the growing 

billow extracts kinetic energy from the mean shear, whilst the turbulence 

energy EQ remains virtually constant at its initial perturbation level. At 

roughly T = 2.5, EQ begins to increase as the billow starts to break, and EK 

levels off at its maximum value. The kinetic energy is effectively 

transferred via potential energy to the small-scale turbulence which reaches a 

peak at T = 5. The large scale motion loses its energy very rapidly after 

breaking, while the small-scale turbulence persists throughout the 

integration, and exhibits a relatively slow rate of decay. Thorpe (1973) 

shows that the turbulence persists until roughly T = TQ + 12 = 15, at which 

point there appears to be a collapse of the turbulent eddies into striated 

structures. The present second-order closure model of the small-scale eddies 

provides a poor representation of this final stage of the decay of turbulence 

in a stably-stratified medium, and we have therefore not attempted to 

integrate beyond T = 13. 

Profiles of the initial and final (T = 11.8) local gradient Richardson 

number, 

are shown in Figure 4. The final value of RiQ in the layer is not quite 

A-13 



constant, but lies between 0.3 and 0.35. This is again consistent with 

Thorpe's estimate of the final Richardson number. This value is significantly 

larger than the critical value of 0.25, so that the mixing-process apparently 

extracts sufficient energy from the initially unstable flow to mix the mean 

profiles further than the point at which no more energy can be extracted. The 

agreement between the calculation and the experiment on this number is some 

confirmation that the model describes the energy transfers in the initial 

stages reasonably accurately. The basic energy source is kinetic energy 

produced by the billow acting on the mean shear, and it seems likely that the 

final amount of mixing will be determined by the amount of energy that the 

billow can extract before it breaks. If the turbulence model predicted the 

wrong time-scales for the breaking process, we would be unlikely to obtain the 

correct final state. .  . 

The evolution from an initial Richardson number of 0.2 is illustrated in 

Figures 5 and 6. A mesh of 41 x 61 grid points was used, as in the previous 

case, with a domain size of 156 in the horizontal again, but only 86 in the 

vertical. Contours of temperature and small-scale turbulent kinetic energy at 

T = 3.0, 6.0, 9.0, 14.6, and 20.6. Clearly, the billow is much more 

restricted in the vertical due to the fact that there is relatively less 

kinetic energy available in the mean shear to drive the instability against 

the restoring buoyancy forces. The higher initial Richardson number also 

makes the turbulent kinetic energy production in the braids less important, so 

that at T = 3 when the isotherms are only just being overturned, the maximum 

energy is already in the vortex core. Furthermore, the restricted size of the 

vortex core appears to result in the turbulence being spread throughout the 

region rather than being confined to the outer half of the vortex as in the 

Ri = 0.1 case. The velocity in the core is also smaller in the Ri = 0.2 case. 
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so there is less tendency for the turbulence to be swept around the outer part 

of the vortex. 

As in the Ri = 0.1 case, the turbulent vortex core spreads horizontally, 

with small scale waves running along the top and bottom of the layer producing 

local turbulence maxima. Finally, the mean motion is totally suppressed, and 

the isotherms become horizontal, and we have a homogeneous layer of 

turbulence. 

The evolution of the large- and small-scale kinetic energies is shown in 

Figure 7. Comparing this with Figure 3, we see that the large-scale roll-up 

extracts much less energy than the Ri = 0.1 case, but the maximum in 

small-scale energy is almost as large as the large-scale. Since the 

small-scale energy arises from the potential energy created by the roll-up 

process, this demonstrates that there is more potential energy per unit 

kinetic energy in the Ri = 0.2 case. This should not be a surprise, since the 

Richardson number is a measure of the ratio of potential to kinetic energy in 

the initial profile, and a linearized disturbance will contain energy in the 

same proportion.       ., , 

We may also note that if the time scale for the Ri = 0.2 case is divided 

by two, then a number of features match up with the Ri = 0.1 case. Defining 

T' = x/Ri, then the large scale energy maximizes at T' ~ 50 in both cases. 

Furthermore, the small-scale energy is down to about half its maximum value at 

T' = 100. It seems that the timescale is determined by the shear velocity and 

the layer thickness, while the buoyancy timescale determines the details of 

the roll-up such as core size and energy partitioning. 

The profile of gradient Richardson number at the final time, T = 20.6. 

is shown in Figure 8 for the case with initial Ri = 0.2. The final state is a 

region of virtually constant Richardson number at a value of roughly 0.45, 

A-15 



slightly larger than the case with Ri = 0.1. The laboratory experiments of 

Thorpe (1973) indicate that the final Richardson number is independent of the 

initial value, the final value being between 0.26 and 0.385, but this result 

is for initial Richardson number less than 0.14. 

In considering atmospheric observations, we must recognize the fact that 

the high-resolution radars are measuring small-scale refractive index changes. 

The latter are very closely related to humidity and temperature fluctuations 

rather than the turbulence energy itself. Since humidity is a scalar, it 

satisfies the same equation as temperature, and it can be shown that the mean 

square humidity fluctuations are identical to the mean square temperature 

fluctuation provided the initial profiles are identical. It is therefore 

instructive to look at the behavior of temperature fluctuations, remembering 

that asymmetries can be introduced by having an asymmetric humidity profile. 

In fact, the length scale of the energy-containing turbulent eddies also 

affects the refractive index fluctuations at the short wavelengths visible to 

the radar, but variations in the length scale do not produce any significant 

changes in the pattern. 

Contours of the mean square temperature fluctuation, Q^/AT^, for the case 

with initial Ri = 0.1 are shown in Figure 9 at x = 1.5, 2.8, 4.3, and 8.8. 

The most obvious feature is the highly localized nature of e^. Initially, o^ 

is concentrated in the developing braids, where the temperature gradient is 

very large. As the billow begins to break, there are local patches of high 

temperature variance in the mixing regions around the edges of the core, but 

these patches do not spread throughout the vortex core as it breaks. Rather, 

as the vortex breaks down, the temperature variance vanishes, and only remains 

in the braids at T = 4.3. As the braids are eroded by the turbulent mixing, 

the temperature variance decays, but remains in narrow bands which are drawn 
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out horizontally until they are almost flat. This qualitative description 

also applies to the Ri = 0.2 case. 

The difference between the temperature variance and velocity variance is 

also evident by comparing Figure 10 with Figures 3 and 7. The integrated 

value of the temperature variance tends to both grow and decay more rapidly 

then the integrated velocity variance. 

The contrast in behavior between the temperature variance and turbulent 

kinetic energy may be somewhat better understood by examining the production 

terms in the second-order turbulence correlations. We have 

  aUi   2g_ .   ^ 
P(q2)  =  - 2uiUk  + — Wb •-       (18) 

o^k   'o 

P(wb)  = - w^ — - uw — - wb — - ub — + :f- 6^ (19) 
az    ax    az    ax  TQ 

P(u2)  = - Wb — - ub — (20) 
az    ax ^    ' 

where P( ) denotes production terms. The only other terms in the relevant 

equations are diffusion and dissipation terms. Now, as the vortex core rolls 

up, large gradients of mean quantities are generated, and consequently the 

production terms are also large. 

Once the vortex breaks the mean gradients are rapidly mixed away, and 

therefore there is only diffusion and dissipation of "b^ which must begin to 

decay immediately. However, there is still production of wb due to the term 

involving the temperature variance. Thus heat flux does not decay as quickly 
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as "B^. Furthermore, wa is the main production term in the q^ equation within 

the core, so the turbulent kinetic energy continues being produced while e^ is 

decaying. Thus q2 grows in the core, and eventually spreads outward 

horizontally, whilst "b^ vanishes in the core, and only remains significant in 

the braids, where there is gradient production. When the braids are eroded, 

the temperature variance is slowly diffused and dissipated, while the mean 

shear stretches the regions of high "u^ into nearly horizontal stratifications. 

The differences between the q^ and "a^ patterns are thus quite plausible. 

We note that this dynamical effect could not be reproduced by an effective 

viscosity model which has no equivalent interaction between second-order 

quantities. We should also note the implication that high resolution radar 

returns from atmospheric billow events of this type should always show 

highly-structured patterns with narrow bands of high intensity, rather than a 

homogeneous layer of turbulence. This is quite consistent with the 

observations reported in the literature. Figure 11 showing the evolution of 

K-H wave breaking as received by radar (Browning and Watkins, 1970) shows the 

same features as exhibited in Figure 9. 

4.  Sensitivity Studies 

There are a number of parameters in the numerical integrations presented 

in the previous section which must be chosen independently from the physical 

constants of the problem. These parameters include numerical discretization 

quantities such as the grid size and initial conditions for the dynamic 

variables. We do not include the empirical constants in the second-order 

turbulence closure model, since these are taken to be fixed from comparison 

with other experimental data. It is important to obtain some indication of 

the dependence of the results or these external parameters if we are to gain a 
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useful understanding from the numerical integrations. The few main quantities 

which need to be chosen are: 

4.1 numerical resolution 

4.2 initial turbulence level 

4.3 initial turbulence length scale 

4.4 length of the integration domain 

We shall investigate variations in each of these quantities independently for 

the case with Ri = 0.2. 

4.1 Numerical resolution. The integration presented in the previous 

section was carried out with a mesh of 41 x 61 points; this was chosen to 

provide adequate resolution of the small scale flow features. This fact is 

demonstrated by comparing the results with those from an integration using 

32 X 40 grid-points. The kinetic energy evolution from both integrations is 

shown in Figure 12. Unfortunately, the low resolution integration had a 

slightly smaller initial vorticity perturbation which is responsible for some 

of the differences, but notwithstanding this initial discrepancy, the overall 

budgets are within about 10%. 

Contour plots from the two runs show that the low resolution integration 

has much more numerical noise around the point where the vortex is breaking 

and gradients are highest. However, this does not adversely affect the 

evolution, as can be seen from the kinetic energy plots, and the two 

integrations do remain very close together throughout the period. 
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4.2 Initial turbulence level. The remaining sensitivity tests are all 

carried out using the low resolution model, so we are comparing with the run 

in Figure 12(b). Figure 13 shows the kinetic energy evolution using an 

initial value for q-^ of 3 x 10-3 ^y2^ which is three times that of the 

previous run. The main effect here is a reduction in the large scale energy 

by about 12%, and an increase of about 10% in the small scale energy maximum. 

Thus a higher background turbulence level retards the development of the 

instability slightly, and also allows the vortex to break a little more 

quickly, extracting more of the potential energy from the roll-up. However, 

the effect is not large, and it can be reasonably assumed that the results are 

representative of small background turbulence levels. In fact, the initial 

value for q^ was chosen as large as reasonably possible in order to provide 

some turbulent mixing to prevent the braids from becoming too thin to be 

resolved by the numerical grid. Since the growth of q^^ in the breaking is via 

the buoyancy term, it is virtually independent of the initial value for q^, 

due to the rapid exponential growth in the initial stages. We therefore feel 

justified in choosing q^ large enough to control the braid thickness, as long 

as it is not large enough to influence the dynamics of the breaking. 

Although the higher value of initial q^, 3 x 10-3 ^u^, appears to have a 

small effect on the energy budgets, there was much less energy in the short 

numerical grid modes, so this run was chosen as the base integration for 

comparison of turbulence length scale and domain length variations. 

4.3 Initial turbulence length scale. This is probably the most difficult 

and unfortunately one of the most sensitive parameters to choose. The choice 

of initial A is not entirely arbitrary, since it must bear some relation to 

the thickness of the shear layer, 6, if we are studying turbulence generated 
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by the instability mechanism itself. We chose the value 0.46 for the runs 

presented in the previous section; this is a reasonable value for a 

turbulence length scale, but cannot be justified too strongly. In order to 

test the sensitivity, we carried out integrations with initial A = 0.26 and 

0.86, and the energy evolutions from all three runs are shown in Figure 14. 

Firstly, the large scale kinetic energy is largely unaffected by the 

choice of A. The only difference is in the oscillation in the decaying phase 

of EK, which is accentuated by small values of A. However, the small scale 

energy does depend quite strongly on the initial value of A. Changing A by a 

factor of 2 in either direction from 0.46 changes the maximum turbulence 

energy by almost a factor of 2 in the same direction. The source of the 

problem is the length scale equation, which does not allow the length scale to 

grow sufficiently quickly during the breaking stage, so that the turbulence 

does remember its initial condition for a long time. The length scale does 

grow as the billow breaks, but not so fast as q^ which is virtually 

independent of its initial condition. 

On this point, all we are able to say is that 0.46 is a reasonable 

initial value for A, and the results of this section illustrate the effect of 

varying A. We should emphasize that the qualitative results, both in the 

energy plots and the details of the contour fields, are not significantly 

changed by this variation in A. Apparently the initial value for A ought to 

be fixed by comparison of turbulence levels with experimental observation, or 

an improved dynamical equation for A is needed. 

4.4 Integration domain length. We choose the wavelength of the unstable 

mode we are studying by fixing the length of our periodic domain. The runs in 

the previous section used a length of 156, which was suggested by the laminar 
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numerical integrations of Patnaik, et al. (1976) as giving the mode which grew 

to largest amplitude. 

Figure 15 shows the energies from three runs with domain lengths of 106, 

156, and 206. Allowing for the length of the domain, the short domain clearly 

restricts the growth of the billow significantly; the large scale energy 

maximum is nearly a quarter of the 156 domain case (i.e., the energy density 

is about 35%), and the turbulence energy is about half (i.e., energy density 

is 75%). It is therefore unlikely that this mode would be the dominant finite 

amplitude mode, since the longer modes would continue to grow. The long 

domain, 206, has a significantly larger energy in the vortex, but allowing for 

the length of the domain, the energy density per unit horizontal length is 

only a little longer. The turbulence energy per unit length is actually 

smaller. 

Thus the case with a domain length of 156 seems to represent the most 

efficient mode for producing kinetic energy, although there is not a great 

deal of difference with a length of 206. 

5.  Conclusions 

This two-dimensional numerical study of breaking Kelvin-Helmholtz waves 

using a second-order turbulence closure model to describe the small-scale 

turbulence has shown agreement with experimental observations on several 

points. More importantly, given the lack of precise quantitative experimental 

data, the numerical integrations have suggested several general features of 

the dynamics of the fine-scale turbulence in addition to the specific 

quantitative predictions of the particular cases studied. These general 

points await further experimental evidence to provide confirmation or 

refutation. 
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The results demonstrate the utility of the closure model in studying this 

problem; the closure model contains most of the important dynamical effects 

necessary for a description of the flow. Furthermore, it is probably the 

minimum sophistication capable of describing the fine-scale turbulence, since 

it has shown that the turbulence develops on the same time scale as the mean 

flow, so that equilibrium assumptions would not be correct. 

The numerical results indicate the correct qualitative behavior, namely 

the billow breaks to produce turbulence in the vortex core, which then spreads 

horizontally to form a homogeneous layer. The layer also spreads vertically 

to a small extent. The time-scale and extents of the spreading are in broad 

agreement with the visual observations of Thorpe (1973). The final value of 

the Richardson number for an initial Ri of 0.1 is consistent with Thorpe's 

measured value of 0.32 ± 0.06. However, Thorpe notes no dependence on initial 

Ri for Ri < 0.14, whilst our final value for Ri = 0.2 is significantly higher. 

It remains to be clarified whether the experiments would show such a trend at 

higher values of Ri. 

The integrations at different initial Richardson numbers suggests that 

the advective timescale £/AU, where i is the wavelength of the billow and AU 

the velociity difference across the shear layer, is the important timescale 

for the growth, breaking, and subsequent decay of the turbulence. The 

buoyancy timescale affects the type of flow since the ratio of the timescales 

is proportional to the square root of the Richardson number. It is quite 

possible that the buoyancy timescale is also important in the late stages of 

the decay, when the turbulent eddies collapse as the mean density gradient is 

re-established. We have not attempted to seriously study this part of the 

evolution, since the closure model has deficiencies in the limit of 

strongly-stratified turbulence. 
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The breaking of the billow itself is seen to be generated by a convective 

instability of the overturned fluid at the top and bottom of the vortex core. 

This turbulence is swept around the vortex, and actually remains largely in 

the outer part of the vortex for a significant length of time in the small 

Richardson number case. The turbulence eventually spreads throughout the 

layer, and amalgamates to form a horizontally homogeneous layer. 

Finally, the results indicate that the temperature variance, a^. evolves 

quite differently from the turbulent-kinetic energy. Different buoyancy 

production terms in the second-order turbulence correlation equations imply 

the rapid decay of "e^ in the breaking vortex core, so that the regions of high 

^remain highly localized in space. Effectively, B^ is generated initially 

in the braids of the developing billow, and these long thin patches are then 

stretched out by the mean shear as they diffuse and decay after the braids 

have been moved away. The evolution of the Kelvin-Helmholtz wave breaking as 

observed by radar in the atmosphere is quite consistent with the evolution of 

the variance of humidity or temperature predicted by the model calculation. 
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LIST OF FIGURES 

Figure 1 - Isopleths of dimensionless temperature (T - To)/ATh for the case 

with Ri = 0.1. The contour interval is 0.2, and positive 

contours (i.e., lighter fluid) are denoted by a dashed line, 

(a) T = 1.5, (b) T = 2.8, (c) T = 4.3, (d) T = 5.8, (e) x = 7.3, 

and (f) T = 11.8. 

Figure 2 - Isopleths of dimensionless turbulence kinetic energy, q^/AU'^ at 

~    the  same times as Figure 1, i.e.,(a) x  = 1.5, (b) x = 2.8, 

(c) X = 4.3, (d) X = 5.8, (e) x = 7.3, and (f) x = 11.8. Contour 

intervals  are as follows:  (a) 0.001, (b) 0.005, (c) 0.01, 

(d) 0.01, (e) 0.007, and (f) 0.002. 

Figure 3    - Evolution of total    kinetic   energies,   EK   and   EQ,   for   the   large 

eddy and the small-scale turbulence in the Ri  = 0.1 case. 

Figure 4    - Profiles   of  gradient   Richardson   number.   Rig,   for   the  Ri  = 0.1 

case.    Solid line is the initial  profile at x = 0, dashed line is 

the profile at x = 11.8. 

Figure 5    - Isopleths of dimensionless temperature   (T - TO)/AT  for   the  case 

with   Ri  = 0.2   at   (a) x = 3,   (b)  T = 6,  (c)  x = 9,  (d)  T = 14.6, 

(e) X = 20.5. Contour interval is 0.2. 

Figure 6 - Isopleths of dimensionless turbulence kinetic energy, Q^/AU^, for 

Ri = 0.2  at  (a) X = 3,  (b) x = 6,  (c) x = 9, (d) x = 14.6. 

(e) X = 20.6.  Contour intervals are  (a) 0.0003,  (b) 0.006, 

(c) 0.007, (d) 0.003, (e) 0.001. 

Figure 7 - Evolution of large scale and small scale eddy kinetic energies 

for the case with Ri = 0.2. 
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Figure 8 - Profile of gradient Richardson number. Rig, for the Ri = 0.2 

case, at T = 23. 

Figure 9 - Isopleths of dimensionless temperature variance, B^/AT-^, for the 

case with Ri = 0.1.  (a) T = 1.5, (b) T = 2.8, (c) x = 4.3, 

(d) T = 8.8.  Contour intervals  are  (a) 0.004,  (b) 0.02, 

(c) 0.02, (d) 0.002. 

Figure 10 - Evolution of the total volume-integrated temperature variance, 

ET, for the case with (a) Ri = 0.1, (b) Ri = 0.2. 

Figure 11 - Schematic representation of the life cycle of an individual 

Kelvin-Helmholtz billow based on the data in the earlier figures. 

Time progresses from right to left. Thick lines correspond to 

the detectable clear air radar echo, which started as a single 

layer at 1243 and finished as a double layer at 1258 GMT. 

Schematic vertical profiles of (AB/AZ) are indicated before and 

after the occurrence of Kelvin-Helmholtz instability.  (From 

Browning and Watkins, 1970). 

Figure 12 - Evolution of eddy kinetic energies for Ri = 0.2 with (a) high 

resolution 41 x 61, (b) low resolution 32 x 40. 

Figure 13 - Evolution of eddy kinetic energies for Ri = 0.2 with different 

initial values of Q^/AU^, (a) 10-3, (b) 3 x 10-3. 

Figure 14 - Evolution of eddy kinetic energies for Ri = 0.2 with different 

initial values of A/6, (a) 0.2, (b) 0.4, (c) 0.8. 

Figure 15 - Evolution of eddy kinetic energies for Ri = 0.2 with different 

domain lengths, (a) 106, (b) 156, (c) 206. 

A-28 



3> 
I 

U3 

z/8   0 

x/8 
16.0 

Figure 1 - Isopleths of dimensionless temperature (T - Tpi/ATh for the 

case with Ri - 0.1.  i he contO!.:r iriL.erval is 0.2, and positive contours 

(i.e., liqhter fluid) are denoted by a dashed line,  (a) x = 1.5. 



T" 

o 

z/8   0 

-3 

-6 ±_.- 
0 3.2 6.4    ^/g    9.6 12.8 16.0 

Figure 1(b)  - x = 2.8 



J 

z/8   0 

0 3.2 6.4       ..    9.6 x/o 
12.8 16.0 

Figure 1(c)  - x = 4.3 
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Figure 1(d)  - x = 5.8 
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Figure 1(e)  -  T  = 7.3 
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Figure 2 - Isopleths of dimensionless turbulence kinetic energy, q^/AU^ at 

the same times as Figure 1, i.e., (a) x = 1.5, contour intervals is 0.001. 
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Figure 2(b)  - x = 2.8, contour interval   is 0.005. 
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Figure 2(d) - x = 5.8, contour interval in 0.01. 
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Figure 2(e) - T = 7.3, contour interval is 0.007. 



3» 
1 

O 

z/8   0 

0 3.2 6.4  ,5. 9.6 
x/S 

12.8    16.0 

Figure 2(f) - T = 11.8, contour interval is 0.002. 
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Figure 3 - Evolution of total kinetic energies, EK and EQ, for the large eddy 

and the small-scale turbulence in the Ri = 0.1 case. 
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at (a) T = 3, contour interval is 0.0003. 
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Figure 6(d) - T = 14.6, contour interval is 0.003. 
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! Figure 7 - Evolution of large scale and small scale eddy kinetic energies for the 

case with Ri = 0.2. 
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Figure 9 - Isopleths of dimension!ess temperature variance e^/AT^ for the case 

with Ri = 1. (a) T = 1.5, contour interval is 0.004. 
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Figure 9(d) - T = 8.8, contour interval is 0.002. 
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Figure 10(a) - Evolution of the total volume-integrated temperature variance, ET, 

for the case with Ri = 0.1. 
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Figure 12 (b) - low resolution 32 x 40. 
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Figure 14 - Evolution of eddy kinetic energies for Ri = 0.2 with different initial 

values of A/5, (a) 0.2. 
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